We all admit at once that the retort was just. What principle of sound conclusion was involved in it? It is the business of Inductive Logic to make such principles explicit.
Taking Post Hoc ergo Propter Hoc as a generic name for fallacious arguments of causation based on observed facts, for the fallacious proof of causation from experience, the question for Logic is, What more than mere sequence is required to prove consequence? When do observations of Post Hoc warrant the conclusion Propter Hoc?
II.—Meaning of "Cause".—Methods of Observation—Mill's Experimental Methods.
The methods formulated by Mill under the name of Experimental Methods are methods actually practised by men of science with satisfactory results, and are perfectly sound in principle. They were, indeed, in substance, taken by him from the practice of the scientific laboratory and study as generalised by Herschel. In effect what Mill did was to restate them and fit them into a system. But the controversies into which he was tempted in so doing have somewhat obscured their exact function in scientific inquiry. Hostile critics, finding that they did not serve the ends that he seemed to claim for them, have jumped to the conclusion that they are altogether illusory and serve no purpose at all.
First, we must dismiss the notion, encouraged by Mill's general theory of Inference, that the Experimental Methods have anything special to do with the observation and inferential extension of uniformities such as that death is common to all organised beings. One of the Methods, as we shall see, that named by Mill the Method of Agreement, does incidentally and collaterally establish empirical laws in the course of its observations, and this probably accounts for the prominence given to it in Mill's system. But this is not its end and aim, and the leading Method, that named by him the Method of Difference, establishes as fact only a particular case of causal coincidence. It is with the proof of theories of causation that the Experimental Methods are concerned: they are methods of observing with a view to such proof.[1]
The next point to be made clear is that the facts of causation with which the Methods are concerned are observable facts, relations among phenomena, but that the causal relations or conditions of which they are the proof are not phenomena, in the meaning of being manifest to the senses, but rather noumena, inasmuch as they are reached by reasoning from what is manifest.
Take, for example, what is known as the quaquaversus principle in Hydrostatics, that pressure upon a liquid is propagated equally in all directions. We cannot observe this extension of pressure among the liquid particles directly. It cannot be traced among the particles by any of our senses. But we can assume that it is so, consider what ought to be visible if it is so, and then observe whether the visible facts are in accordance with the hypothesis. A box can be made, filled with water, and so fitted with pistons on top and bottom and on each of its four sides that they will indicate the amount of pressure on them from within. Let pressure then be applied through a hole in the top, and the pistons show that it has been communicated to them equally. The application of the pressure and the yielding of the pistons are observable facts, facts in causal sequence: what happens among the particles of the liquid is not observed but reasonably conjectured, is not phenomenal but noumenal.
This distinction, necessary to an understanding of the scope of the Methods, was somewhat obscured by Mill in his preliminary discussion of the meaning of "cause". Very rightly, though somewhat inconsistently with his first theory of Induction, he insists that "the notion of Cause being the root of the whole theory of Induction, it is indispensable that this idea should at the very outset of our inquiry be, with the utmost practicable degree of precision, fixed and determined". But in this determination, not content with simply recognising that it is with phenomena that the Experimental Methods primarily deal, it being indeed only phenomena that can be the subjects of experimental management and observation, he starts by declaring that science has not to do with any causes except such as are phenomenal—"when I speak of the cause of any phenomenon, I do not mean a cause which is not itself a phenomenon"—and goes on to define as the only correct meaning of cause "the sum total of conditions," including among them conditions which are not phenomenal, in the sense of being directly open to observation.
When Mill protested that he had regard only to phenomenal causes, he spoke as the partisan of a philosophical tradition. It would have been well if he had acted upon his own remark that the proper understanding of the scientific method of investigating cause is independent of metaphysical analysis of what cause means. Curiously enough, this remark is the preface to an analysis of cause which has but slight relevance to science, and is really the continuation of a dispute begun by Hume. This is the key to his use of the word phenomenon: it must be interpreted with reference to this: when he spoke of causes as phenomenal, he opposed the word to "occult" in some supposed metaphysical sense.[2] And this irrelevant discussion, into the vortex of which he allowed himself to be carried, obscured the fact, elsewhere fully recognised by Mill himself, that science does attempt to get beyond phenomena at ultimate laws which are not themselves phenomena though they bind phenomena together. The "colligation" of the facts, to use Whewell's phrase, is not a phenomenon, but a noumenon.
The truth is that a very simple analysis of "cause" is sufficient for the purposes of scientific inquiry. It is enough to make sure that causal sequence or consequence shall not be confounded with simple sequence. Causal sequence is simple sequence and something more, that something more being expressed by calling it causal. What we call a cause is not merely antecedent or prior in time to what we call its effect: it is so related to the effect that if it or an equivalent event had not happened the effect would not have happened. Anything in the absence of which a phenomenon would not have come to pass as it did come to pass is a cause in the ordinary sense. We may describe it as an indispensable antecedent, with this reservation (which will be more fully understood afterwards), that if we speak of a general effect, such as death, the antecedents must be taken with corresponding generality.