When the circumstances are simple and the effect follows at once, as when hot water scalds, or a blow with a stick breaks a pane of glass, there can be no doubt of the causal connexion so far, though plenty of room for further inquiry into the why. But the mere succession of phenomena may be obscure. We may introduce more than one agent without knowing it, and if some time elapses between the experimental interference and the appearance of the effect, other agents may come in without our knowledge.

We must know exactly what it is that we introduce and all the circumstances into which we introduce it. We are apt to ignore the presence of antecedents that are really influential in the result. A man heated by work in the harvest field hastily swallows a glass of water, and drops down dead. There is no doubt that the drinking of the water was a causal antecedent, but the influential circumstance may not have been the quantity or the quality of the liquid but its temperature, and this was introduced into the situation as well as a certain amount of the liquid components. In making tea we put in so much tea and so much boiling water. But the temperature of the pot is also an influential circumstance in the resulting infusion. So in chemical experiments, where one might expect the result to depend only upon the proportions of the ingredients, it is found that the quantity is also influential, the degree of heat evolved entering as a factor into the result. Before we can apply the principle of single difference, we must make sure that there is really only a single difference between the instances that we bring into comparison.

The air-pump was invented shortly before the foundation of the Royal Society, and its members made many experiments with this new means of isolating an agent and thus discovering its potentialities. For example, live animals were put into the receiver, and the air exhausted, with the result that they quickly died. The absence of the air being the sole difference, it was thus proved to be indispensable to life. But air is a composite agent, and when means were contrived of separating its components, the effects of oxygen alone and of carbonic acid alone were experimentally determined.

A good example of the difficulty of excluding agencies other than those we are observing, of making sure that none such intrude, is found in the experiments that have been made in connexion with spontaneous generation. The question to be decided is whether life ever comes into existence without the antecedent presence of living germs. And the method of determining this is to exclude all germs rigorously from a compound of inorganic matter, and observe whether life ever appears. If we could make sure in any one case that no germs were antecedently present, we should have proved that in that case at least life was spontaneously generated.

The difficulty here arises from the subtlety of the agent under observation. The notion that maggots are spontaneously generated in putrid meat, was comparatively easy to explode. It was found that when flies were excluded by fine wire-gauze, the maggots did not appear. But in the case of microscopic organisms proof is not so easy. The germs are invisible, and it is difficult to make certain of their exclusion. A French experimenter, Pouchet, thought he had obtained indubitable cases of spontaneous generation. He took infusions of vegetable matter, boiled them to a pitch sufficient to destroy all germs of life, and hermetically sealed up the liquid in glass flasks. After an interval, micro-organisms appeared. Doubts as to the conclusion that they had been spontaneously generated turned upon two questions: whether all germs in the liquid had been destroyed by the preliminary boiling, and whether germs could have found access in the course of the interval before life appeared. At a certain stage in Pouchet's process he had occasion to dip the mouths of the flasks in mercury. It occurred to Pasteur in repeating the experiments that germs might have found their way in from the atmospheric dust on the surface of this mercury. That this was so was rendered probable by his finding that when he carefully cleansed the surface of the mercury no life appeared afterwards in his flasks.

The application of the principle in human affairs is rendered uncertain by the immense complication of the phenomena, the difficulty of experiment, and the special liability of our judgments to prejudice. That men and communities of men are influenced by circumstances is not to be denied, and the influence of circumstances, if it is to be traced at all, must be traced through observed facts. Observation of the succession of phenomena must be part at least of any method of tracing cause and effect. We must watch what follows upon the addition of new agencies to a previously existing sum. But we can seldom or never get a decisive observation from one pair of instances, a clear case of difference of result preceded by a single difference in the antecedents. The simple Method of Experimental Addition or Subtraction is practically inapplicable. We can do nothing with a man analogous to putting him into a hermetically sealed retort. Any man or any community that is the subject of our observations must be under manifold influences. Each of them probably works some fraction of the total change observable, but how are they to be disentangled? Consider, for example, how impossible it would be to prove in an individual case, on the strict principle of Single Difference, that Evil communications corrupt good manners. Moral deterioration may be observed following upon the introduction of an evil companion, but how can we make sure that no other degrading influence has operated, and that no original depravity has developed itself in the interval? Yet such propositions of moral causation can be proved from experience with reasonable probability. Only it must be by more extended observations than the strict Method of Difference takes into account. The method is to observe repeated coincidences between evil companionship and moral deterioration, and to account for this in accordance with still wider observations of the interaction of human personalities.

For equally obvious reasons the simple Method of Difference is inapplicable to tracing cause and effect in communities. Every new law or repeal of an old law is the introduction of a new agency, but the effects of it are intermixed with the effects of other agencies that operate at the same time. Thus Professor Cairnes remarks, concerning the introduction of a high Protective Tariff into the United States in 1861, that before its results could appear in the trade and manufacture of the States, there occurred (1) The great Civil War, attended with enormous destruction of capital; (2) Consequent upon this the creation of a huge national debt, and a great increase of taxation; (3) The issue of an inconvertible paper currency, deranging prices and wages; (4) The discovery of great mineral resources and oil-springs; (5) A great extension of railway enterprise. Obviously in such circumstances other methods than the Method of Difference must be brought into play before there can be any satisfactory reasoning on the facts observed. Still what investigators aim at is the isolation of the results of single agencies.

[Footnote 1:] Prof. Bain, who adopts Mill's Canon, silently drops the words within brackets. They seem to be an inadvertence. The "circumstance," in all the examples that Mill gives, is an antecedent circumstance. Herschel's statement, of which Mill's is an adaptation, runs as follows: "If we can either find produced by nature, or produce designedly for ourselves, two instances which agree exactly in all but one particular and differ in that one, its influence in producing the phenomenon, if it have any, must thereby be rendered apparent".