Mica and hornblende, although the principal, are not the only, accessory minerals in gneiss; but the following species are also of common occurrence: garnet, cyanite, tourmaline, fibrolite, epidote, and chlorite. Gneisses, as the table indicates, exhibit a wide range in the proportion of silica which they contain, varying from 60 to 85 per cent.; and there is a concomitant variation in specific gravity, from about 2.5 in the most acidic to 2.8 in the most basic varieties.
That gneiss is a true, stratified rock is very clearly shown in specimen 41; but, unfortunately, the stratification is not always so evident as in this case. The mica-scales, it will be observed, lie parallel with the stratification, and assist very materially to make it visible; and gneisses containing little or no mica, as well as some that are rich in mica, frequently appear almost or quite unstratified. These obscurely stratified varieties are commonly known as granitoid gneiss, having the texture and general aspect of granite. The sedimentary origin of gneiss is also clearly proved by its interstratification with undoubted sedimentary rocks, such as limestone, iron-ores, graphite, quartzite, etc.
Syenite.—This is a much abused term, but, as now employed by the best lithologists, it is the name of a rock having a single essential constituent, viz., orthoclase. Syenite in its simplest variety contains nothing but orthoclase; but in addition we usually have either hornblende, forming hornblendic syenite, or mica, forming micaceous syenite.
Syenite, it will be observed, is equivalent to gneiss with the quartz removed; but, while gneiss is the most abundant of all rocks, syenite is a comparatively rare rock; and this is simply another way of saying that nearly all orthoclase is associated with quartz. By admixture of quartz we get a perfectly gradual passage from syenite to gneiss. The orthoclase in syenite is more frequently replaced by plagioclase than it is in gneiss. In syenite, too, hornblende is much more abundant than mica; although just the opposite is true in gneiss. And, again, in gneiss the mica is principally muscovite; but in syenite it is almost exclusively biotite. Augite is a common accessory in the more basic syenite; but garnet, tourmaline, and the other accessory minerals, occurring so frequently in gneiss, are almost unknown in syenite. The specific gravity of syenite varies from 2.7 to 2.9.
Diorite.—This is a more important rock than syenite; but it is of analogous, though more basic, composition, containing a single essential constituent, viz., plagioclase. Any of the triclinic feldspars may occur in this rock, but oligoclase is most common. Like syenite, diorite usually contains hornblende, often in large proportion, forming hornblendic diorite, which sometimes passes into rocks composed entirely of hornblende. It also, but less frequently, contains mica, forming micaceous diorite. The mica is usually biotite, rarely muscovite. Mica and hornblende also often occur together in diorite, and the same is true of syenite and gneiss. Quartz is of common occurrence in the more acidic varieties of diorite, and augite in the more basic.
This is a good example of a basic rock, for all its normal constituents are basic; but the percentage of silica varies from 45 in those varieties richest in labradorite and augite to 60 or more in those containing more or less quartz and orthoclase. There is a corresponding change of color from dark to light, and of specific gravity from 2.7 to 3.1.
Diorite is not rich in accessory minerals; besides those already mentioned, the most important are chlorite, epidote, pyrite, and magnetite.
Few rocks are more clearly stratified than diorite, whether we consider the hand-specimen, or its relations to other formations. It is an abundant rock in New England.
Norite.—Like diorite, this is essentially a plagioclase rock; but there are, nevertheless, important differences. The plagioclase in diorite is mainly the more acidic species, like oligoclase; while in norite the more basic species, such as labradorite and anorthite, predominate. Hornblende, which we have observed to be an important and rather constant constituent of diorite and syenite, is much less abundant in norite; but its place is taken by augite and the allied minerals, hypersthene and enstatite. Black mica is common in norite; but white mica, orthoclase, and quartz rarely occur.
Norite is the most basic of all the feldspathic rocks, as gneiss is the most acidic; while syenite and diorite stand as connecting links, forming a gradual passage between the two extremes. Thus, in passing from gneiss to norite, we have observed a gradual diminution of the quartz, a gradual change in feldspar from orthoclase to the most basic plagioclase; at first a gradual increase in hornblende, and then a gradual change from hornblende to augite; and, finally, a gradual substitution of black mica for white. The amount of silica has decreased over 40 per cent.; and the specific gravity has increased from 2.5 in the lightest gneiss to at least 3.2 in the heaviest norite. We have also passed from light colored rocks to dark; and from those resisting atmospheric action to those easily decomposed.