Thus, during what is known as the Paleozoic era, a sea extended from the Blue Ridge to the Rocky Mountains. Along the eastern margin of this sea, where the Alleghany Mountains now stand, sediments—chiefly conglomerate and sandstone, with some slate and less limestone—accumulated to a thickness of nearly 40,000 feet. Toward the west, away from the old shore-line, the coarse sediments gradually die out, and the formations become finer and thinner. In western Ohio and Indiana, slate and limestone predominate; while in the central part of the ancient sea, in Illinois and Missouri, the paleozoic sediments are almost wholly limestones, and have a thickness of only 4000 to 5000 feet. In other words, while one foot of limestone was forming in the Mississippi Valley, eight to ten feet of coarser sediments were deposited in Pennsylvania.
The best estimates show that coral-reefs rise—i.e., limestones are formed on them—at the rate of about one foot in two hundred years. But coral limestones grow much more rapidly than limestones in general. Sandstones sometimes accumulate so rapidly that trees are buried before they have time to decay and fall ([Fig. 9]). Such a buried forest, like a coal-bed, represents a land surface, and proves a subsidence of the land; and in some cases, as indicated by the section, repeated oscillations of the crust may be proved in this way.
The mud deposited by the annual overflow of the Nile is forty feet thick near the ancient city of Memphis; and the pedestal of the statue of Rameses II., believed to have been erected B.C. 1361, is buried to a depth of nine feet, four inches, indicating that 13,500 years have elapsed since the Nile began to spread its mud over the sands of the desert.
Fig. 9.—Erect fossil trees.
But the greatest difficulty in estimating the time required for the formation of any series of strata arises from the fact that we cannot usually even guess at the length of the periods when the deposition has been partially or wholly interrupted. Now and then, however, we find evidence that these periods may be very long. A layer of fossil shells in sandstone or slate proves an interruption of mechanical deposition. Beds of coal, fossil forests, and other indications of land surfaces are still more conclusive. The interposition of strata ([Fig. 5]) proves a prolonged interruption of deposition over the area not covered by the interposed bed. But the most important of all evidence is that afforded by unconformability; and the length of the lost interval between the two formations is measured approximately by the erosion of the older.
Original Structures of Eruptive Rocks.
The structures of this class are divisible into those pertaining to the volcanic rocks and those pertaining to the fissure or dike rocks. But since volcanoes are rare in this part of the world, while dikes are well developed in many sections of our country, it seems best to give our attention chiefly to the latter.
Fig. 10.—Typical dikes.