Categorical Syllogisms, which are far more common than the other two kinds, have been considered in the previous chapter, and the majority of the examples of syllogisms given in this book are of this kind. In a Categorical Syllogism the statement or denial is made positively, and without reservation or qualification, and the reasoning thereupon partakes of the same positive character. In propositions or syllogisms of this kind it is asserted or assumed that the premise is true and correct, and, if the reasoning be logically correct it must follow that the conclusion is correct, and the new proposition springing therefrom must likewise be Categorical in its nature.

Hypothetical Syllogisms, on the contrary, have as one or more of their premises a hypothetical proposition which affirms or asserts something provided, or "if," something else be true. Hyslop says of this: "Often we wish first to bring out, if only conditionally, the truth upon which a proposition rests, so as to see if the connection between this conclusion and the major premise be admitted. The whole question will then depend upon the matter of treating the minor premise. This has the advantage of getting the major premise admitted without the formal procedure of proof, and the minor premise is usually more easily proved than the major. Consequently, one is made to see more clearly the force of the argument or reasoning by removing the question of the material truth of the major premise and concentrating attention upon the relation between the conclusion and its conditions, so that we know clearly what we have first to deny if we do not wish to accept it."

By joining a hypothetical proposition with an ordinary proposition we create a Hypothetical Proposition. For instance: "If York contains a cathedral it is a city; York does contain a cathedral; therefore, York is a city." Or: "If dogs have four feet, they are quadrupeds; dogs do have four feet; therefore dogs are quadrupeds." The Hypothetical Syllogism may be either affirmative or negative; that is, its hypothetical proposition may either hypothetically affirm or hypothetically deny. The part of the premise of a Hypothetical Syllogism which conditions or questions (and which usually contains the little word "if") is called the Antecedent. The major premise is the one usually thus conditioned. The other part of the conditioned proposition, and which part states what will happen or is true under the conditional circumstances, is called the Consequent. Thus, in one of the above examples: "If dogs have four feet" is the Antecedent; and the remainder of the proposition: "they are quadrupeds" is the Consequent. The Antecedent is indicated by the presence of some conditional term as: if, supposing, granted that, provided that, although, had, were, etc., the general sense and meaning of such terms being that of the little word "if." The Consequent has no special indicating term.

Jevons gives the following clear and simple Rules regarding the Hypothetical Syllogism:

I. "If the Antecedent be affirmed, the consequent may be affirmed. If the Consequent be denied, the Antecedent may be denied."

II. "Avoid the fallacy of affirming the consequent, or denying the antecedent. This is a fallacy because of the fact that the conditional statement made in the major premise may not be the only one determining the consequent." The following is an example of "Affirming the Consequent:" "If it is raining, the sky is overclouded; the sky is overclouded; therefore, it is raining." In truth, the sky may be overclouded, and still it may not be raining. The fallacy is still more apparent when expressed in symbols, as follows: "If A is B, C is D; C is D; therefore, A is B." The fallacy of denying the Antecedent is shown by the following example: "If Radium were cheap it would be useful; Radium is not cheap; therefore Radium is not useful." Or, expressed in symbols: "If A is B, C is D; A is not B; therefore C is not D." In truth Radium may be useful although not cheap. Jevons gives the following examples of these fallacies: "If a man is a good teacher, he thoroughly understands his subject; but John Jones thoroughly understands his subject; therefore, he is a good teacher." Also, "If snow is mixed with salt it melts; the snow on the ground is not mixed with salt; therefore it does not melt."

Jevons says: "To affirm the consequent and then to infer that we can affirm the antecedent, is as bad as breaking the third rule of the syllogism, and allowing an undistributed middle term.... To deny the antecedent is really to break the fourth rule of the syllogism, and to take a term as distributed in the conclusion which was not so in the premises."

Hypothetical Syllogisms may usually be easily reduced to or converted into Categorical Syllogisms. As Jevons says: "In reality, hypothetical propositions and syllogisms are not different from those which we have more fully considered. It is all a matter of the convenience of stating the propositions." For instance, instead of saying: "If Radium were cheap, it would be useful," we may say "Cheap Radium would be useful;" or instead of saying: "If glass is thin, it breaks easily," we may say "Thin glass breaks easily." Hyslop gives the following Rule for Conversion in such cases: "Regard the antecedent of the hypothetical proposition as the subject of the categorical, and the consequent of the hypothetical proposition as the predicate of the categorical. In some cases this change is a very simple one; in others it can be effected only by a circumlocution."

The third class of syllogisms, known as The Disjunctive Syllogism, is the exception to the law which holds that all good syllogisms must fit in and come under the Rules of the Syllogism, as stated in the preceding chapter. Not only does it refuse to obey these Rules, but it fails to resemble the ordinary syllogism in many ways. As Jevons says: "It would be a great mistake to suppose that all good logical arguments must obey the rules of the syllogism, which we have been considering. Only those arguments which connect two terms together by means of a middle term, and are therefore syllogisms, need obey these rules. A great many of the arguments which we daily use are of this nature; but there are a great many other kinds of arguments, some of which have never been understood by logicians until recent years. One important kind of argument is known as the Disjunctive Syllogism, though it does not obey the rules of the syllogism, or in any way resemble syllogisms."

The Disjunctive Syllogism is one having a disjunctive proposition in its major premise. The disjunctive proposition also appears in the conclusion when the disjunction in the major premise happens to contain more than two terms. A disjunctive proposition, we have seen, is one which possesses alternative predicates for the subject in which the conjunction "or" (sometimes accompanied by "either") appears. As for instance: "Lightning is sheet or forked;" or, "Arches are either round or pointed;" or, "Angles are either obtuse, or right angled, or acute." The different things joined together by "or" are called Alternatives, the term indicating that we may choose between the things, and that if one will not answer our purpose we may take the other, or one of the others if there be more than one other.