We are not to consider friction as a small force, slightly modifying the effects of other agencies. On the contrary its amount is in most cases very great. When a body lies loose on the ground, the friction is equal to one-third or one-half, or in some cases the whole of its weight. But in cases of bodies supported by oblique pressure, the amount is far more enormous. In the arch of a bridge, the friction which is called into play between two of the vaulting stones, may be equal to the whole weight of the bridge. In such cases this conservative force is so great, that the common theory, which neglects it, does not help us even to guess what will take place. According to the theory, certain forms of arches only will stand, but in practice almost any form will stand, and it is not easy to construct a model of a bridge which will fall.
We may see the great force of friction in the brake, by which a large weight running down a long inclined plane has its motion moderated and stopt; in the windlass, where a few coils of the rope round a cylinder sustain the stress and weight of a large iron anchor; in the nail or screw which holds together large beams; in the mode of raising large blocks of granite by an iron rod driven into a hole in the stone. Probably no greater forces are exercised in any processes in the arts than the force of friction; and it is always employed to produce rest, stability, moderate motion. Being always ready and never wearied, always at hand and augmenting with the exigency, it regulates, controls, subdues all motions;—counteracts all other agents;—and finally gains the mastery over all other terrestrial agencies, however violent, frequent, or long continued. The perpetual action of all other terrestrial forces appears, on a large scale, only as so many interruptions of the constant and stationary rule of friction.
The objects which every where surround us, the books or dishes which stand on our tables, our tables and chairs themselves, the loose clods and stones in the field, the heaviest masses produced by nature or art, would be in a perpetual motion, quick or slow according to the forces which acted on them, and to their size, if it were not for the tranquillizing and steadying effects of the agent we are considering. Without this, our apartments, if they kept their shape, would exhibit to us articles of furniture, and of all other kinds, sliding and creeping from side to side with every push and every wind, like loose objects in a ship’s cabin, when she is changing her course in a gale.
Here, then, we have a force, most extensive and incessant in its operation, which is absolutely essential to the business of this terrestrial world, according to any notion which we can form. The more any one considers its effects, and the more he will find how universally dependent he is upon it, in every action of his life; resting or moving, dealing with objects of art or of nature, with instruments of enjoyment or of action.
2. Now we have to observe concerning this agent, Friction, that we have no ground for asserting it to be a necessary result of other properties of matter, for instance, of their solidity and coherency. Philosophers have not been able to deduce the laws of friction from the other known properties of matter, nor even to explain what we know experimentally of such laws, (which is not much,) without introducing new hypotheses concerning the surfaces of bodies, &c.—hypotheses which are not supplied us by any other set of phenomena. So far as our knowledge goes, friction is a separate property, and may be conceived to have been bestowed upon matter for particular purposes. How well it answers the purpose of fitting matter for the uses of the daily life of man, we have already seen.
We may make suppositions as to the mode in which friction is connected with the texture of bodies; but little can be gained for philosophy, or for speculation of any kind, by such conjectures respecting unknown connexions. If, on the other hand, we consider this property of friction, and find that it prevails there, and there only, where the general functions, analogies, and relations of the universe require it, we shall probably receive a strong impression that it was introduced into the system of the world for a purpose.
3. It is very remarkable that this force, which is thus so efficacious and discharges such important offices in all earthly mechanism, disappears altogether when we turn to the mechanism of the heavens. All motions on the earth soon stop;—a machine which imitates the movements of the stars cannot go long without winding up: but the stars themselves have gone on in their courses for ages, with no diminution of their motions, and offer no obvious prospect of any change. This is so palpable a fact, that the first attempts of men to systematize their mechanical notions were founded upon it. The ancients held that motions were to be distinguished into natural motions and violent,—the former go on without diminution—the latter are soon extinguished;—the motions of the stars are of the former kind;—those of a stone thrown, and in short all terrestrial motions, of the latter. Modern philosophers maintain that the laws of motion are the same for celestial and terrestrial bodies;—that all motions are natural according to the above description;—but that in terrestrial motions, friction comes in and alters their character,—destroys them so speedily that they appear to have existed only during an effort. And that this is the case will not now be contested. Is it not then somewhat remarkable that the same laws which produce a state of permanent motion in the heavens, should, on the earth, give rise to a condition in which rest is the rule and motion the exception? The air, the waters, and the lighter portions of matter are, no doubt, in a state of perpetual motion; over these friction has no empire: yet even their motions are interrupted, alternate, variable, and on the whole slight deviations from the condition of equilibrium. But in the solid parts of the globe, rest predominates incomparably over motion: and this, not only with regard to the portions which cohere as parts of the same solid; for the whole surface of the earth is covered with loose masses, which, if the power of friction were abolished, would rush from their places and begin one universal and interminable dance, which would make the earth absolutely uninhabitable.
If, on the other hand, the dominion of friction were extended in any considerable degree into the planetary spaces, there would soon be an end of the system. If the planet had moved in a fluid, as the Cartesians supposed, and if this fluid had been subject to the rules of friction which prevail in terrestrial fluids, their motions could not have been of long duration. The solar system must soon have ceased to be a system of revolving bodies.
But friction is neither abolished on the earth, nor active in the heavens. It operates where it is wanted, it is absent where it would be prejudicial. And both these circumstances occasion, in a remarkable manner, the steadiness of the course of nature. The stable condition of the objects in man’s immediate neighbourhood, and the unvarying motions of the luminaries of heaven, are alike conducive to his well-being. This requires that he should be able to depend upon a fixed order of place, a fixed course of time. It requires, therefore, that terrestrial objects should be affected by friction, and that celestial should not; as is the case, in fact. What further evidence of benevolent design could this part of the constitution of the universe supply?
4. There is another view which may be taken of the forces which operate on the earth to produce permanency or change. Some parts of the terrestrial system are under the dominion of powers which act energetically to prevent all motion, as the crystalline forces by which the parts of rocks are bound together; other parts are influenced by powers which produce a perpetual movement and change in the matter of which they consist; thus plants and animals are in a constant state of internal movement, by the agency of the vital forces. In the former case rigid immutability, in the latter perpetual developement, are the tendencies of the agencies employed. Now in the case of objects affected by friction, we have a kind of intermediate condition, between the constantly fixed and the constantly moveable. Such objects can and do move; but they move but for a short time if left to the laws of nature. When at rest, they can easily be put in motion, but still not with unlimited ease; a certain finite effort, different in different cases, is requisite for their purpose. Now this immediate condition, this capacity of receiving readily and alternately the states of rest and motion, is absolutely requisite for the nature of man, for the exertion of will, of contrivance, of foresight, as well as for the comfort of life and the conditions of our material existence. If all objects were fixed and immoveable, as if frozen into one mass; or if they were susceptible of such motions only as are found in the parts of vegetables, we attempt in vain to conceive what would come of the business of the world. But besides the state of a particle which cannot be moved, and of a particle which cannot be stopped, we have the state of a particle moveable but not moved; or moved, but moved only while we choose: and this state is that about which the powers, the thoughts, and the wants of man are mainly conversant.