The opinion illustrated in the last chapter, that the advances which men make in science tend to impress upon them the reality of the Divine government of the world, has often been controverted. Complaints have been made, and especially of late years, that the growth of piety has not always been commensurate with the growth of knowledge, in the minds of those who make nature their study. Views of an irreligious character have been entertained, it is sometimes said, by persons eminently well instructed in all the discoveries of modern times, no less than by the superficial and ignorant. Those who have been supposed to deny or to doubt the existence, the providence, the attributes of God, have in many cases been men of considerable eminence and celebrity for their attainments in science. The opinion that this is the case, appears to be extensively diffused, and this persuasion has probably often produced inquietude and grief in the breasts of pious and benevolent men.

This opinion, concerning the want of religious convictions among those who have made natural philosophy their leading pursuit, has probably gone far beyond the limits of the real fact. But if we allow that there are any strong cases to countenance such an opinion, it may be worth our while to consider how far they admit of any satisfactory explanation. The fact appears at first sight to be at variance with the view we have given of the impression produced by scientific discovery; and it is moreover always a matter of uneasiness and regret, to have men of eminent talents and knowledge opposed to doctrines which we consider as important truths.

We conceive that an explanation of such cases, if they should occur, may be found in a very curious and important circumstance belonging to the process by which our physical sciences are formed. The first discovery of new general truths, and the developement of these truths when once obtained, are two operations extremely different; imply different mental habits, and may easily be associated with different views and convictions on points out of the reach of scientific demonstration. There would therefore be nothing surprising, or inconsistent with what we have maintained above, if it should appear that while original discoverers of laws of nature are peculiarly led, as we have seen, to believe the existence of a supreme intelligence and purpose; the far greater number of cultivators of science, whose employment it is to learn from others these general laws, and to trace, combine, and apply their consequences, should have no clearness of conviction or security from error on this subject, beyond what belongs to persons of any other class.

This will, perhaps, become somewhat more evident by considering a little more closely the distinction of the two operations of discovery and developement, of which we have spoken above, and the tendency which the habitual prosecution of them may be expected to produce in the thoughts and views of the student.

We have already endeavoured in some measure to describe that which takes place when a new law of nature is discovered. A number of facts in which, before, order and connexion did not appear at all, or appeared by partial and contradictory glimpses, are brought into a point of view in which order and connexion become their essential character. It is seen that each fact is but a different manifestation of the same principle; that each particular is that which it is, in virtue of the same general truth. The inscription is deciphered; the enigma is guessed; the principle is understood; the truth is enunciated.

When this step is once made, it becomes possible to deduce from the truth thus established, a train of consequences often in no small degree long and complex. The process of making these inferences may properly be described by the word Deduction, while the very different process by which a new principle is collected from an assemblage of facts, has been termed Induction; the truths so obtained and their consequences constitute the results of the Inductive Philosophy; which is frequently and rightly described as a science which ascends from particular facts to general principles, and then descends again from these general principles to particular applications and exemplifications.

While the great and important labours by which science is really advanced consist in the successive steps of the inductive ascent in the discovery of new laws perpetually more and more general; by far the greater part of our books of physical science unavoidably consists in deductive reasoning, exhibiting the consequences and applications of the laws which have been discovered; and the greater part of writers upon science have their minds employed in this process of deduction and application.

This is true of many of those who are considered, and justly, as distinguished and profound philosophers. In the mechanical philosophy, that science which applies the properties of matter and the laws of motion to the explanation of the phenomena of the world, this is peculiarly the case. The laws, when once discovered, occupy little room in their statement, and when no longer contested, are not felt to need a lengthened proof. But their consequences require far more room and far more intellectual labour. If we take, for example, the laws of motion and the law of universal gravitation, we can express in a few lines, that which, when developed, represents and explains an innumerable mass of natural phenomena. But here the course of developement is necessarily so long, the reasoning contains so many steps, the considerations on which it rests are so minute and refined, the complication of cases and of consequences is so vast, and even the involution arising from the properties of space and number so serious, that the most consummate subtlety, the most active invention, the most tenacious power of inference, the widest spirit of combination, must be tasked and tasked severely, in order to solve the problems which belong to this portion of science. And the persons who have been employed on these problems, and who have brought to them the high and admirable qualities which such an office requires, have justly excited in a very eminent degree the admiration which mankind feel for great intellectual powers. Their names occupy a distinguished place in literary history; and probably there are no scientific reputations of the last century higher, and none more merited, than those earned by the great mathematicians who have laboured with such wonderful success in unfolding the mechanism of the heavens; such for instance as D’Alembert, Clairault, Euler, Lagrange, Laplace.

But it is still important to recollect, that the mental employments of men, while they are occupied in this portion of the task of the formation of science, are altogether different from that which takes place in the mind of a discoverer, who, for the first time, seizes the principle which connects phenomena before unexplained, and thus adds another original truth to our knowledge of the universe. In explaining, as the great mathematicians just mentioned have done, the phenomena of the solar system by means of the law of universal gravitation, the conclusions at which they arrived were really included in the truth of the law itself, whatever skill and sagacity it might require to develope and extricate them from the general principle. But when Newton conceived and established the law itself, he added to our knowledge something which was not contained in any truth previously known, nor deducible from it by any course of mere reasoning. And the same distinction, in all other cases, obtains, between these processes which establish the principles, generally few and simple, on which our sciences rest, and those reasonings and calculations, founded on the principles thus obtained, which constitute by far the larger portion of the common treatises on the most complete of the sciences now cultivated.

Since the difference is so great between the process of inductive generalization of physical facts, and that of mathematical deduction of consequences, it is not surprising that the two processes should imply different mental powers and habits. However rare the mathematical talent, in its highest excellence, may be, it is far more common, if we are to judge from the history of science, than the genius which divines the general laws of nature. We have several good mathematicians in every age; we have few great discoverers in the whole history of our species.