[6] Hist. Ind. Sc. b. xv. c. v.
4. While in Germany Weiss and Mohs with their disciples, were gradually rejecting what was superfluous in the previous crystallographical hypotheses, philosophers in England were also trying to represent to themselves the constitution of crystals in a manner which should be free from the obviously arbitrary and untenable fictions of the Haüyian school. These attempts, however, were not crowned with much success. One mode of representing the structure of crystals which suggested itself, was to reject the polyhedral forms which Haüy gave to his integrant molecules, and to conceive the elements of crystals as spheres, the properties of the crystal being determined not by the surfaces, but by the position of the elements. This was done by Wollaston, in the Philosophical Transactions for 1813. He applied this view to the tessular system, in which, indeed, the application is not difficult; and he showed that octahedral and tetrahedral figures may be deduced from symmetrical arrangements of equal spherules. But though in doing this, he manifested a perception of the conditions of the problem, he appeared to lose his hold on the real question when he tried to pass on to other systems of crystallization. For he accounted for the rhombohedral system by supposing the spheres changed into spheroids. Such a procedure involved him in a gratuitous and useless hypothesis: for to what purpose do we introduce the [86] arrangement of atoms (instead of their figure,) as a mode of explaining the symmetry of the crystallization, when at the next step we ascribe to the atom, by an arbitrary fiction, a symmetry of figure of the same kind as that which we have to explain? It is just as easy, and as allowable, to assume an elementary rhombohedron, as to assume elementary spheroids, of which the rhombohedrons are constructed.
5. Many hypotheses of the same kind might be adduced, devised both by mineralogists and chemists. But almost all such speculations have been pursued with a most surprising neglect of the principle which obviously is the only sound basis on which they can proceed. The principle is this:—that All hypotheses concerning the arrangement of the elementary atoms of bodies in space must be constructed with reference to the general facts of crystallization. The truth and importance of this principle can admit of no doubt. For if we make any hypothesis concerning the mode of connexion of the elementary particles of bodies, this must be done with the view of representing to ourselves the forces which connect them, and the results of these forces as manifested in the properties of the bodies. Now the forces which connect the particles of bodies so as to make them crystalline, are manifestly chemical forces. It is only definite chemical compounds which crystallize; and in crystals the force of cohesion by which the particles are held together cannot in any way be distinguished or separated from the chemical force by which their elements are combined. The elements are understood to be combined, precisely because the result is a definite, apparently homogeneous substance. The properties of the compound bodies depend upon the elements and their mode of combination; for, in fact, these include everything on which they can depend. There are no other circumstances than these which can affect the properties of a body. Therefore all those properties which have reference to space, namely, the crystalline properties, cannot depend upon anything else than the arrangement of the elementary molecules in space. These [87] properties are the facts which any hypothesis of the arrangement of molecules must explain, or at least render conceivable; and all such hypotheses, all constructions of bodies by supposed arrangements of molecules, can have no other philosophical object than to account for facts of this kind. If they do not do this, they are mere arbitrary geometrical fictions, which cannot be in any degree confirmed or authorised by an examination of nature, and are therefore not deserving of any regard.
6. Those philosophers who have endeavoured to represent the mode in which bodies are constructed by the combination of their chemical atoms, have often undertaken to show, not only that the atoms are combined, but also in what positions and configurations they are combined. And it is truly remarkable, as I have already said, that they have done this, almost in every instance, without any consideration of the crystalline character of the resulting combinations; from which alone we receive any light as to the relation of their elements in space. Thus Dr. Dalton, in his Elements of Chemistry, in which he gave to the world the Atomic Theory as a representation of the doctrine of definite and multiple proportions, also published a large collection of Diagrams, exhibiting what he conceived to be the configuration of the atoms in a great number of the most common combinations of chemical elements. Now these hypothetical diagrams do not in any way correspond, as to the nature of their symmetry, with the compounds, as we find them displaying their symmetry when they occur crystallized. Carbonate of lime has in reality a triangular symmetry, since it belongs to the rhombohedral system; Dr. Dalton’s carbonate of lime would be an oblique rhombic prism or pyramid. Sulphate of baryta is really two-and-two membered; Dr. Dalton’s diagram makes it two-and-one membered. Alum is really octahedral or tessular; but according to the diagram it could not be so, since the two ends of the atom are not symmetrical. And the same want of correspondence between the facts and the hypothesis runs through the whole [88] system. It need not surprise us that the theoretical arrangement of atoms does not explain the facts of crystallization; for to produce such an explanation would be a second step in science quite as great as the first, the discovery of the atomic theory in its chemical sense. But we may allow ourselves to be surprised that an utter discrepance between all the facts of crystallization and the figures assumed in the theory, did not suggest any doubt as to the soundness of the mode of philosophizing by which this part of the theory was constructed.
7. Some little accordance between the hypothetical arrangements of chemical atoms and the facts of crystallization, does appear to have been arrived at by some of the theorists to whom we here refer, although by no means enough to show a due conviction of the importance of the principle stated above. Thus Wollaston, in the Essay above noticed, after showing that a symmetrical arrangement of equal spherules would give rise to octahedral and other tessular figures, remarks, very properly, that the metals, which are simple bodies, crystallize in such forms. M. Ampère[7] also, in 1814, published a brief account of an hypothesis of a somewhat similar nature, and stated himself to have developed this speculation in a Memoir which has not yet, so far as I am aware, been published. In this notice he conceives bodies to be compounded of molecules, which, arranged in a polyhedral form, constitute particles. These representative forms of the particles depend on chemical laws. Thus the particles of oxygen, of hydrogen, and of azote, are composed each of four molecules. Hence it is collected that the particles of nitrous gas are composed of two molecules of oxygen and two of azote; and similar conclusions are drawn respecting other substances. These conclusions, though expressed by means of the polyhedrons thus introduced, are supported by chemical, rather than by crystallographical comparisons. The author does, indeed, appeal to the crystallization of sal [89] ammoniac as an argument[8]; but as all the forms which he introduces appear to belong to the tessular system of crystallization, there is, in his reasonings, nothing distinctive; and therefore nothing, crystallographically speaking, of any weight on the side of this theory.
[7] Ann. de Chimie, tom. xc. p. 43.
[8] Ann. de Chimie, tom. xc. p. 83.
8. Any hypothesis which should introduce any principle of chemical order among the actual forms of minerals, would well deserve attention. At first sight, nothing can appear more anomalous than the forms which occur. We have, indeed, one broad fact, which has an encouraging aspect, the tessular forms in which the pure metals crystallize. The highest degree of chemical and of geometrical simplicity coincide: irregularity disappears precisely where it is excluded by the consideration above stated, that the symmetry of chemical composition must determine the symmetry of crystalline form[9].
[9] Inasmuch as this law, that the simple metals crystallize in tessular forms, is the most signal example of that connexion between the chemical nature of a body and its crystalline form, I in the former Edition stated it with as much generality as I could find any ground for, and I should have been glad if I could have added confirmation of the law, derived from later observations. But the most recent investigations of crystallographers appear to have afforded exceptions rather than examples of the rule. Arsenic and Tellurium are said to be rhombohedral. Antimony, stated by Haüy to be octahedral (and therefore tessular), has been found by more modern observers to be rhombohedral. Tin has been obtained by Professor Miller in beautiful crystals belonging to the pyramidal system. Professor Nöggerath has observed in Zinc, after cooling from fusion, hexagonal cleavage, rendering it probable that the mineral crystallized in rhombohedrons having their axes vertical, like ice. G. Rose conceives it highly probable that Osmium and Iridium are rhombohedral. (Poggendorf. Bd. liv.)
But all the more perfect metals are tessular; namely, Gold, Silver, Mercury, Platinum, Iron, Copper; also Bismuth [?] Perhaps the observation in which the crystallization of Zinc is affected by its position is, on that very account, no sufficient evidence of its free crystallization. We can hardly conceive a collection of perfectly simple, similar particles to crystallize so as to have one pre-eminent axis, without some extraneous action affecting them.
But if we go on to any other class of crystalline forms, we soon find ourselves lost in our attempts to [90] follow any thread of order. We have indeed many large groups connected by obvious analogies; as the rhombohedral carbonates of lime, magnesia, iron, manganese;—the prismatic carbonates and sulphates of lime, baryta, strontia, lead. But even in these, we cannot form any plausible hypothesis of the arrangement of the elements; and in other cases to which we naturally turn, we can find nothing but confusion. For instance, if we examine the oxides of metals:—those of iron are rhombohedral and tessular; those of copper, tessular; those of tin, of titanium, of manganese, square pyramidal; those of antimony, prismatic; and we have other forms for other substances.