[25] Ib. iv. 361.

Attempts were made to prove the acid and alkaline nature of the fluids of the human body by means of experiments, as by John Viridet of Geneva[26], and by Raimond Vieussens[27], the latter of whom maintained that he had extracted an acid from the blood, and detected a ferment in the stomach. In opposition to him, Hecquet, a disciple of the iatromathematical school, endeavoured to prove that digestion was performed, not by means of fermentation, but by trituration. Hecquet’s own opinions cannot be defended; but his objections to the chemical doctrines, and his assertion of the difference of chemical and organical processes, are evidences of just thought[28].

[26] Spr. iv. 329.

[27] Ib. 350, (1715).

[28] Ib. 401.

The most important opponents of the iatrochemical school were Pitcairn in England, Bohn and Hoffman in Germany, and Boerhaave in Holland. These eminent physicians, about the end of the seventeenth century, argued on the same grounds of observation, that digestion is not fermentation, and that the Sylvian accounts of the origin of diseases by means of acid and alkali are false. The arguments and authority of these and other persons finally gained an ascendancy in the medical world, and soon after this period we may consider the reign of the chemical school of physiology as past. In fact, the attempts to prove its assertions experimentally were of the feeblest kind, and it had no solid basis on which it could rest, so as to resist the shock of the next hypothesis which the progress of the physical sciences might impel against it. We may, therefore, now consider the opinion of the mere [182] chemical nature of the vital processes as disproved, and we proceed next to notice the history of another unsuccessful essay to reduce vital actions to known actions of another kind.

Sect. III.—The Iatromathematical School.

In the first Section of this chapter, we enumerated the biological hypotheses which at first present themselves, as the mystical, the mechanical, the chemical. We might have expected that they should occur to men’s minds in the order thus stated: and in fact they did so; for the physiology of the ancient materialists, as Democritus and Lucretius, is mechanical so far as it is at all distinct in its views, and thus the mechanical preceded the chemical doctrine. But in modern times, the fluid or chemical physiology was developed before the solid or mechanical: of which the reason appears to have been this;—that Mechanics and Chemistry began to assume a scientific character about the same time; and that of the two, Chemistry not only appeared at first sight more applicable to the functions of the body, because all the more rapid changes appear to be connected with modifications of the fluids of the animal system, but also, by its wider range of facts and more indefinite principles, afforded a better temporary refuge for the mind when perplexed by the difficulties and mysteries which spring out of the speculations concerning life. But if Chemistry was thus at first a more inviting field for the physiologist, Mechanics soon became more attractive in virtue of the splendid results obtained by the schools of Galileo and Newton. And when the insufficiency of chemical physiology was discovered by trial, as we have seen it was, the hope naturally arose, that the mechanical principles which had explained so many of the phenomena of the external universe might also be found, applicable to the smaller world of material life;—that the microcosm as well as the macrocosm might have its mechanical principles. From this hope sprung the [183] Iatromathematical School, or school of Mechanical Physiologists.

We may, however, divide this school into two parts, the Italian, and the Cartesio-Newtonian sect. The former employed themselves in calculating and analysing a number of the properties of the animal frame which are undoubtedly mechanical; the latter, somewhat intoxicated by the supposed triumphs of the corpuscular philosophy, endeavoured to extend these to physiology, and for this purpose introduced into the subject many arbitrary and baseless hypotheses. I will very briefly mention some of the writers of both these sects.

The main points to which the Italian or genuine Mechanical Physiologists attended, were the application of mechanical calculations to the force of the muscles, and of hydraulical reasonings to the motion of the fluids of the animal system. The success with which Galileo and his disciples had pursued these branches of mechanical philosophy, and the ascendancy which they had obtained, first in Italy, and then in other lands, made such speculations highly interesting. Borelli may be considered as the first great name in his line, and his book, De Motu Animalium, (Opus Posthumum, Romæ, 1680,) is even now a very instructive treatise on the forces and action of the bones and muscles. This, certainly one of the most valuable portions of mechanical physiology, has not even yet been so fully developed as it deserves, although John Bernoulli[29] and his son Daniel[30] applied to it the resources of analysis, and Pemberton[31] in England, pursued the same subject. Other of these mechanico-physiological problems consisted in referring the pressure of the blood and of the breath to hydrostatical principles. In this manner Borelli was led to assert that the muscles of the heart exert a force of 180,000 pounds[32]. But a little later, Keill reduced this force [184] to a few ounces[33]. Keill and others attempted to determine, on similar principles, the velocity of the blood; we need not notice the controversies which thus arose, since there is not involved in them any peculiar physiological principle.