We have already considered the separation of our knowledge into its two elements,—Impressions of Sense and Ideas,—as evidently indicated by this; that all knowledge possesses characters which neither of these [58] elements alone could bestow. Without our ideas, our sensations could have no connexion; without external impressions, our ideas would have no reality; and thus both ingredients of our knowledge must exist.
2. There is another mode in which the distinction of the two elements of knowledge appears, as I have already said (c. i. [sect. 2]): namely in the distinction of necessary, and contingent or experiential, truths. For of these two classes of truths, the difference arises from this;—that the one class derives its nature from the one, and the other from the other, of the two elements of knowledge. I have already stated briefly the difference of these two kinds of truths:—namely, that the former are truths which, we see, must be true:—the latter are true, but so far as we can see, might be otherwise. The former are true necessarily and universally: the latter are learnt from experience and limited by experience. Now with regard to the former kind of truths, I wish to show that the universality and necessity which distinguish them can by no means be derived from experience; that these characters do in reality flow from the ideas which these truths involve; and that when the necessity of the truth is exhibited in the way of logical demonstration, it is found to depend upon certain fundamental principles, (Definitions and Axioms,) which may thus be considered as expressing, in some measure, the essential characters of our ideas. These fundamental principles I shall afterwards proceed to discuss and to exhibit in each of the principal departments of science.
I shall begin by considering Necessary Truths more fully than I have yet done. As I have already said, necessary truths are those in which we not only learn, that the proposition is true, but see that it must be true; in which the negation of the truth is not only false, but impossible; in which we cannot, even by an effort of imagination, or in a supposition, conceive the reverse of that which is asserted.
3. That there are such truths cannot be doubted. We may take, for example, all relations of number. Three and Two added together make Five. We cannot [59] conceive it to be otherwise. We cannot, by any freak of thought, imagine Three and Two to make Seven.
It may be said that this assertion merely expresses what we mean by our words; that it is a matter of definition; that the proposition is an identical one.
But this is by no means so. The definition of Five is not Three and Two, but Four and One. How does it appear that Three and Two is the same number as Four and One? It is evident that it is so; but why is it evident?—not because the proposition is identical; for if that were the reason, all numerical propositions must be evident for the same reason. If it be a matter of definition that 3 and 2 make 5, it must be a matter of definition that 39 and 27 make 66. But who will say that the definition of 66 is 39 and 27? Yet the magnitude of the numbers can make no difference in the ground of the truth. How do we know that the product of 13 and 17 is 4 less than the product of 15 and 15? We see that it is so, if we perform certain operations by the rules of arithmetic; but how do we know the truth of the rules of arithmetic? If we divide 123375 by 987 according to the process taught us at school, how are we assured that the result is correct, and that the number 125 thus obtained is really the number of times one number is contained in the other?
The correctness of the rule, it may be replied, can be rigorously demonstrated. It can be shown that the process must inevitably give the true quotient.
Certainly this can be shown to be the case. And precisely because it can be shown that the result must be true, we have here an example of a necessary truth; and this truth, it appears, is not therefore necessary because it is itself evidently identical, however it may be possible to prove it by reducing it to evidently identical propositions. And the same is the case with all other numerical propositions; for, as we have said, the nature of all of them is the same.
Here, then, we have instances of truths which are not only true, but demonstrably and necessarily true. Now such truths are, in this respect at least, altogether [60] different from truths, which, however certain they may be, are learnt to be so only by the evidence of observation, interpreted, as observation must be interpreted, by our own mental faculties. There is no difficulty in finding examples of these merely observed truths. We find that sugar dissolves in water, and forms a transparent fluid, but no one will say that we can see any reason beforehand why the result must be so. We find that all animals which chew the cud have also the divided hoof; but could any one have predicted that this would be universally the case? or supposing the truth of the rule to be known, can any one say that he cannot conceive the facts as occurring otherwise? Water expands when it crystallizes, some other substances contract in the same circumstances; but can any one know that this will be so otherwise than by observation? We have here propositions rigorously true, (we will assume,) but can any one say they are necessarily true? These, and the great mass of the doctrines established by induction, are actual, but so far as we can see, accidental laws; results determined by some unknown selection, not demonstrable consequences of the essence of things, inevitable and perceived to be inevitable. According to the phraseology which has been frequently used by philosophical writers, they are contingent, not necessary truths.
It is requisite to insist upon this opposition, because no insight can be obtained into the true nature of knowledge, and the mode of arriving at it, by any one who does not clearly appreciate the distinction. The separation of truths which are learnt by observation, and truths which can be seen to be true by a pure act of thought, is one of the first and most essential steps in our examination of the nature of truth, and the mode of its discovery. If any one does not clearly comprehend this distinction of necessary and contingent truths, he will not be able to go along with us in our researches into the foundations of human knowledge; nor, indeed, to pursue with success any speculation on the subject. But, in fact, this distinction is one that can hardly fail to be at once understood. It [61] is insisted upon by almost all the best modern, as well as ancient, metaphysicians[5], as of primary importance. And if any person does not fully apprehend, at first, the different kinds of truth thus pointed out, let him study, to some extent, those sciences which have necessary truth for their subject, as geometry, or the properties of numbers, so as to obtain a familiar acquaintance with such truth; and he will then hardly fail to see how different the evidence of the propositions which occur in these sciences, is from the evidence of the facts which are merely learnt from experience. That the year goes through its course in 365 days, can only be known by observation of the sun or stars: that 365 days is 52 weeks and a day, it requires no experience, but only a little thought to perceive. That bees build their cells in the form of hexagons, we cannot know without looking at them; that regular hexagons may be arranged so as to fill space, may be proved with the utmost rigour, even if there were not in existence such a thing as a material hexagon.