CHAPTER V.
Of the Grounds of Necessary Truths.
1. TO the question just stated, I reply, that the necessity and universality of the truths which form a part of our knowledge, are derived from the Fundamental Ideas which those truths involve. These ideas entirely shape and circumscribe our knowledge; they regulate the active operations of our minds, without which our passive sensations do not become knowledge. They govern these operations, according to rules which are not only fixed and permanent, but which may be expressed in plain and definite terms; and these rules, when thus expressed, may be made the basis of demonstrations by which the necessary relations imparted to our knowledge by our Ideas may be traced to their consequences in the most remote ramifications of scientific truth.
These enunciations of the necessary and evident conditions imposed upon our knowledge by the Fundamental Ideas which it involves, are termed Axioms. Thus the Axioms of Geometry express the necessary conditions which result from the Idea of Space; the Axioms of Mechanics express the necessary conditions which flow from the Ideas of Force and Motion; and so on.
2. It will be the office of several of the succeeding Books of this work to establish and illustrate in detail what I have thus stated in general terms. I shall there pass in review many of the most important fundamental ideas on which the existing body of our science depends; and I shall endeavour to show, for each such idea in succession, that knowledge involves an active as well as a passive element; that it is not possible without an act of the mind, regulated by certain [70] laws. I shall further attempt to enumerate some of the principal fundamental relations which each idea thus introduces into our thoughts, and to express them by means of definitions and axioms, and other suitable forms.
I will only add a remark or two to illustrate further this view of the ideal grounds of our knowledge.
3. To persons familiar with any of the demonstrative sciences, it will be apparent that if we state all the Definitions and Axioms which are employed in the demonstrations, we state the whole basis on which those reasonings rest. For the whole process of demonstrative or deductive reasoning in any science, (as in geometry, for instance,) consists entirely in combining some of these first principles so as to obtain the simplest propositions of the science; then combining these so as to obtain other propositions of greater complexity; and so on, till we advance to the most recondite demonstrable truths; these last, however intricate and unexpected, still involving no principles except the original definitions and axioms. Thus, by combining the Definition of a triangle, and the Definitions of equal lines and equal angles, namely, that they are such as when applied to each other, coincide, with the Axiom respecting straight lines (that two such lines cannot inclose a space,) we demonstrate the equality of triangles, under certain assumed conditions. Again, by combining this result with the Definition of parallelograms, and with the Axiom that if equals be taken from equals the wholes are equal, we prove the equality of parallelograms between the same parallels and upon the same base. From this proposition, again, we prove the equality of the square on the hypotenuse of a triangle to the squares on the two sides containing the right angle. But in all this there is nothing contained which is not rigorously the result of our geometrical Definitions and Axioms. All the rest of our treatises of geometry consists only of terms and phrases of reasoning, the object of which is to connect those first principles, and to exhibit the effects of their combination in the shape of demonstration. [71]
4. This combination of first principles takes place according to the forms and rules of Logic. All the steps of the demonstration may be stated in the shape in which logicians are accustomed to exhibit processes of reasoning in order to show their conclusiveness, that is, in Syllogisms. Thus our geometrical reasonings might be resolved into such steps as the following:—
All straight lines drawn from the centre of a circle to its circumference are equal:
But the straight lines ab, ac, are drawn from the centre of a circle to its circumference:
Therefore the straight lines ab, ac, are equal.
Each step of geometrical, and all other demonstrative reasoning, may be resolved into three such clauses as these; and these three clauses are termed respectively, the major premiss, the minor premiss, and the conclusion; or, more briefly, the major, the minor, and the conclusion.