We thus collect from that repetition of which time admits, the conception of Number.

9. The relations of position and figure are the subject of the science of geometry; and are, as we have already said, traced into a very remarkable and extensive body of truths, which rests for its foundations on axioms involved in the Idea of Space. There is, in like manner, a science of great complexity and extent, which has its foundation in the Idea of Time. But this science, as it is usually pursued, applies only to the conception of Number, which is, as we have said, the simplest result of repetition. This science is Theoretical Arithmetic, or the speculative doctrine of the properties and relations of numbers; and we must say a few words concerning the principles which it is requisite to assume as the basis of this science.

CHAPTER IX.
Of the Axioms which relate to Number.


1. THE foundations of our speculative knowledge of the relations and properties of Number, as well as of Space, are contained in the mode in which we represent to ourselves the magnitudes which are the subjects of our reasonings. To express these foundations in axioms in the case of number, is a matter requiring some consideration, for the same reason as in the case of geometry; that is, because these axioms are principles which we assume as true, without being aware that we have made any assumption; and we cannot, without careful scrutiny, determine when we have stated, in the form of axioms, all that is necessary for the formation of the science, and no more than is necessary. We will, however, attempt to detect the principles which really must form the basis of theoretical arithmetic.

2. Why is it that three and two are equal to four and one? Because if we look at five things of any kind, we see that it is so. The five are four and one; they are also three and two. The truth of our assertion is involved in our being able to conceive the number five at all. We perceive this truth by intuition, for we cannot see, or imagine we see, five things, without perceiving also that the assertion above stated is true.

But how do we state in words this fundamental principle of the doctrine of numbers? Let us consider a very simple case. If we wish to show that seven and two are equal to four and five, we say that seven are four and three, therefore seven and two are four and three and two; and because three and two are [139] five, this is four and five. Mathematical reasoners justify the first inference (marked by the conjunctive word therefore), by saying that “When equals are added to equals the wholes are equal,” and that thus, since seven is equal to three and four, if we add two to both, seven and two are equal to four and three and two.

3. Such axioms as this, that when equals are added to equals the wholes are equal, are, in fact, expressions of the general condition of intuition, by which a whole is contemplated as made up of parts, and as identical with the aggregate of the parts. And a yet more general form in which we might more adequately express this condition of intuition would be this; that ‘Two magnitudes are equal when they can be divided into parts which are equal, each to each.’ Thus in the above example, seven and two are equal to four and five, because each of the two sums can be divided into the parts, four, three, and two.

4. In all these cases, a person who had never seen such axioms enunciated in a verbal form would employ the same reasoning as a practised mathematician, in order to satisfy himself that the proposition was true. The steps of the reasoning, being seen to be true by intuition, would carry an entire conviction, whether or not the argument were made verbally complete. Hence the axioms may appear superfluous, and on this account such axioms have often been spoken contemptuously of, as empty and barren assertions. In fact, however, although they cannot supply the deficiency of the clear intuition of number and space in the reasoner himself, and although when he possesses such a faculty, he will reason rightly if he have never heard of such axioms, they still have their place properly at the beginning of our treatises on the science of quantity; since they express, as simply as words can express, those conditions of the intuition of magnitudes on which all reasoning concerning quantity must be based; and are necessary when we want, not only to see the truth of the elementary reasonings on these subjects, but to put such reasonings in a formal and logical shape. [140]