CHAPTER XI.
Of Mathematical Reasoning.


1. Discursive Reasoning.—We have thus seen that our notions of space, time, and their modifications, necessarily involve a certain activity of the mind; and that the conditions of this activity form the foundations of those sciences which have the relations of space, time, and number, for their object. Upon the fundamental principles thus established, the various sciences which are included in the term Pure Mathematics, (Geometry, Algebra, Trigonometry, Conic Sections, and the rest of the Higher Geometry, the Differential Calculus, and the like,) are built up by a series of reasonings. These reasonings are subject to the rules of Logic, as we have already remarked; nor is it necessary here to dwell long on the nature and rules of such processes. But we may here notice that such processes are termed discursive, in opposition to the operations by which we acquire our fundamental principles, which are, as we have seen, intuitive. This opposition was formerly very familiar to our writers; as Milton,—

.  .  .  Thus the soul reason receives,
Discursive or intuitive.—Paradise Lost, v. 438.

For in such reasonings we obtain our conclusions, not by looking at our conceptions steadily in one view, which is intuition, but by passing from one view to another, like those who run from place to place (discursus). Thus a straight line may be at the same time a side of a triangle and a radius of a circle: and in the first proposition of Euclid a line is considered, first in one of these relations, and then in the other, and thus the sides of a certain triangle are proved to be equal. And by this ‘discourse of reason,’ as by our older [148] writers it was termed, we set forth from those axioms which we perceive by intuition, travel securely over a vast and varied region, and become possessed of a copious store of mathematical truths.

2. Technical Terms of Reasoning.—The reasoning of mathematics, thus proceeding from a few simple principles to many truths, is conducted according to the rules of Logic. If it be necessary, mathematical proofs may be reduced to logical forms, and expressed in Syllogisms, consisting of major, minor, and conclusion. But in most cases the syllogism is of that kind which is called by logical writers an Enthymeme; a word which implies something existing in the thoughts only, and which designates a syllogism in which one of the premises is understood, and not expressed. Thus we say in a mathematical proof, ‘because the point c is the center of the circle ab, ac is equal to bc;’ not stating the major,—that all lines drawn from the center of a circle to the circumference are equal; or introducing it only by a transient reference to the definition of a circle. But the enthymeme is so constantly used in all habitual forms of reasoning, that it does not occur to us as being anything peculiar in mathematical works.

The propositions which are proved to be generally true are termed Theorems: but when anything is required to be done, as to draw a line or a circle under given conditions, this proposition is a Problem. A theorem requires demonstration; a problem, solution. And for both purposes the mathematician usually makes a Construction. He directs us to draw certain lines, circles, or other curves, on which is to be founded his demonstration that his theorem is true, or that his problem is solved. Sometimes, too, he establishes some Lemma, or preparatory proposition, before he proceeds to his main task; and often he deduces from his demonstration some conclusion in addition to that which was the professed object of his proposition; and this is termed a Corollary.

These technical terms are noted here, not as being very important, but in order that they may not sound [149] strange and unintelligible if we should have occasion to use some of them. There is, however, one technical distinction more peculiar, and more important.

3. Geometrical Analysis and Synthesis.—In geometrical reasoning such as we have described, we introduce at every step some new consideration; and it is by combining all these considerations, that we arrive at the conclusion, that is, the demonstration of the proposition. Each step tends to the final result, by exhibiting some part of the figure under a new relation. To what we have already proved, is added something more; and hence this process is called Synthesis, or putting together. The proof flows on, receiving at every turn new contributions from different quarters; like a river fed and augmented by many tributary streams. And each of these tributaries flows from some definition or axiom as its fountain, or is itself formed by the union of smaller rivulets which have sources of this kind. In descending along its course, the synthetical proof gathers all these accessions into one common trunk, the proposition finally proved.

But we may proceed in a different manner. We may begin from the formed river, and ascend to its sources. We may take the proposition of which we require a proof, and may examine what the supposition of its truth implies. If this be true, then something else may be seen to be true; and from this, something else, and so on. We may often, in this way, discover of what simpler propositions our theorem or solution is compounded, and may resolve these in succession, till we come to some proposition which is obvious. This is geometrical Analysis. Having succeeded in this analytical process, we may invert it; and may descend again from the simple and known propositions, to the proof of a theorem, or the solution of a problem, which was our starting-place.