3. The Greeks, however, in the first vigour of their pursuit of mathematical truth, at the time of Plato and soon after, had by no means confined themselves to those propositions which had a visible bearing on the phenomena of nature; but had followed out many beautiful trains of research, concerning various kinds of figures, for the sake of their beauty alone; as for instance in their doctrine of Conic Sections, of which curves they had discovered all the principal properties. But it is curious to remark, that these investigations, thus pursued at first as mere matters of curiosity and intellectual gratification, were destined, two thousand years later, to play a very important part in [162] establishing that system of the celestial motions which succeeded the Platonic scheme of cycles and epicycles. If the properties of the conic sections had not been demonstrated by the Greeks, and thus rendered familiar to the mathematicians of succeeding ages, Kepler would probably not have been able to discover those laws respecting the orbits and motions of the planets which were the occasion of the greatest revolution that ever happened in the history of science.
4. The Arabians, who, as I have elsewhere said, added little of their own to the stores of science which they received from the Greeks, did however make some very important contributions in those portions of pure mathematics which are subservient to astronomy. Their adoption of the Indian mode of computation by means of the Ten Digits, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, and by the method of Local Values, instead of the cumbrous sexagesimal arithmetic of the Greeks, was an improvement by which the convenience and facility of numerical calculations were immeasurably augmented. The Arabians also rendered several of the processes of trigonometry much more commodious, by using the Sine of an arc instead of the Chord; an improvement which Albategnius appears to claim for himself[20]; and by employing also the Tangents of arcs, or, as they called them[21], upright shadows.
[20] Delambre, Ast., M. A., p. 12.
[21] Ibid. p. 17.
5. The constant application of mathematical knowledge to the researches of Astronomy, and the mutual influence of each science on the progress of the other, has been still more conspicuous in modern times. Newton’s Method of Prime and Ultimate Ratios, which we have already noticed as the first correct exposition of the doctrine of a Limit, is stated in a series of Lemmas, or preparatory theorems, prefixed to his Treatise on the System of the World. Both the properties of curve lines and the doctrines concerning force and motion, which he had to establish, required that the common mathematical processes should be methodized and extended. If Newton had not been a most [163] expert and inventive mathematician, as well as a profound and philosophical thinker, he could never have made any one of those vast strides in discovery of which the rapid succession in his work strikes us with wonder[22]. And if we see that the great task begun by him, goes on more slowly in the hands of his immediate successors, and lingers a little before its full completion, we perceive that this arises, in a great measure, from the defect of the mathematical methods then used. Newton’s synthetical modes of investigation, as we have elsewhere observed, were an instrument[23], powerful indeed in his mighty hand, but too ponderous for other persons to employ with effect. The countrymen of Newton clung to it the longest, out of veneration for their master; and English cultivators of physical astronomy were, on that very account, left behind the progress of mathematical science in France and Germany, by a wide interval, which they have only recently recovered. On the Continent, the advantages offered by a familiar use of symbols, and by attention to their symmetry and other relations, were accepted without reserve. In this manner the Differential Calculus of Leibnitz, which was in its origin and signification identical with the Method of Fluxions of Newton, soon surpassed its rival in the extent and generality of its application to problems. This Calculus was applied to the science of mechanics, to which it, along with the symmetrical use of co-ordinates, gave a new form; for it was soon seen that the most difficult problems might in general be reduced to finding integrals, which is the reciprocal process of that by which differentials are found; so that all difficulties of physical astronomy were reduced to difficulties of symbolical calculation, these, indeed, being often sufficiently stubborn. Clairaut, Euler, and D’Alembert employed the increased resources of mathematical science upon the Theory of the Moon, and other questions relative to the system of the world; and thus began to pursue such inquiries in the course in which mathematicians [164] are still labouring up to the present day. This course was not without its checks and perplexities. We have elsewhere quoted[24] Clairaut’s expression when he had obtained the very complex differential equations which contain the solution of the problem of the moon’s motion: ‘Now integrate them who can!’ But in no very long time they were integrated, at least approximately; and the methods of approximation have since then been improved; so that now, with a due expenditure of labour, they may be carried to any extent which is thought desirable. If the methods of astronomical observation should hereafter reach a higher degree of exactness than they now profess, so that irregularities in the motions of the sun, moon, and planets, shall be detected which at present escape us, the mathematical part of the theory of universal gravitation is in such a condition that it can soon be brought into comparison with the newly-observed facts. Indeed at present the mathematical theory is in advance of such observations. It can venture to suggest what may afterwards be detected, as well as to explain what has already been observed. This has happened recently; for Professor Airy has calculated the law and amount of an inequality depending upon the mutual attraction of the Earth and Venus; of which inequality (so small is it,) it remains to be determined whether its effect can be traced in the series of astronomical observations.
[22] Hist. Ind. Sc. b. vii. c. ii.
[23] Ibid. p. 175.
[24] Hist. Ind. Sc. b. vi. c. vi. sect. 7.
6. As the influence of mathematics upon the progress of astronomy is thus seen in the cases in which theory and observation confirm each other, so this influence appears in another way, in the very few cases in which the facts have not been fully reduced to an agreement with theory. The most conspicuous case of this kind is the state of our knowledge of the Tides. This is a portion of astronomy: for the Newtonian theory asserts these curious phenomena to be the result of the attraction of the sun and moon. Nor can there be any doubt that this is true, as a general statement; yet the subject is up to the present time a blot [165] on the perfection of the theory of universal gravitation; for we are very far from being able in this, as in the other parts of astronomy, to show that theory will exactly account for the time, and magnitude, and all other circumstances of the phenomenon at every place on the earth’s surface. And what is the portion of our mathematics which is connected with this solitary signal defect in astronomy? It is the mathematics of the Motion of Fluids; a portion in which extremely little progress has been made, and in which all the more general problems of the subject have hitherto remained entirely insoluble. The attempts of the greatest mathematicians, Newton, Maclaurin, Bernoulli, Clairaut, Laplace, to master such questions, all involve some gratuitous assumption, which is introduced because the problem cannot otherwise be mathematically dealt with: these assumptions confessedly render the result defective, and how defective, it is hard to say. And it was probably precisely the absence of a theory which could be reasonably expected to agree with the observations, which made Observations of this very curious phenomenon, the Tides, to be so much neglected as till very recently they were. Of late years such observations have been pursued, and their results have been resolved into empirical laws, so that the rules of the phenomena have been ascertained, although the dependence of these rules upon the lunar and solar forces has not been shown. Here then we have a portion of our knowledge relating to facts undoubtedly dependent upon universal gravitation, in which Observation has outstripped Theory in her progress, and is compelled to wait till her usual companion overtakes her. This is a position of which Mathematical Theory has usually been very impatient, and we may expect that she will be no less so in the present instance.
7. It would be easy to show from the history of other sciences, for example, Mechanics and Optics, how essential the cultivation of pure mathematics has been to their progress. The parabola was already familiar among mathematicians when Galileo discovered that it was the theoretical path of a Projectile; and the [166] extension and generalization of the Laws of Motion could never have been effected, unless the Differential and Integral Calculus had been at hand, ready to trace the results of every hypothesis which could be made. D’Alembert’s mode of expressing the Third Law of Motion in its most general form[25], if it did not prove the law, at least reduced the application of it to analytical processes which could be performed in most of those cases in which they were needed. In many instances the demands of mechanical science suggested the extension of the methods of pure analysis. The problem of Vibrating Strings gave rise to the Calculus of Partial Differences, which was still further stimulated by its application to the motions of fluids and other mechanical problems. And we have in the writings of Lagrange and Laplace other instances equally remarkable of new analytical methods, to which mechanical problems, and especially cosmical problems, have given occasion.