Thus we obtain, in this case, a solution of the difficulty which is placed before us. The instantaneous effect or change is simultaneous with the instantaneous force or cause by which it is [198] produced. But if we consider a series of such instantaneous forces as a single aggregate cause, and the final condition as a permanent effect of this cause, the effect is subsequent to the cause. In this case, the cause is immediately succeeded by the effect. The cause acts in time: the effect goes on in time. The times occupied by the cause and by the effect succeed each other, the one ending at the point of time at which the other begins. But the time which the cause occupies is really composed of a series of instants of uniform motion interposed between instantaneous forces; and during the time that this series of causes is going on, to make up the aggregate cause, a series of effects is going on to make up the final effect. There is a progressive cause and a progressive effect which go on together, and occupy the same finite time; and this simultaneous progression is composed of all the simultaneous instantaneous steps of cause and effect. The aggregate cause is the sum of the progression of causes; the final effect is the last term of the progression of effects. At each step, as the Reviewer says, cause is transformed into effect; and it is treasured up in the results during the intermediate intervals; and the time occupied is not the time which intervenes between cause and effect at each step, but the time which intervenes between these transformations.

I have supposed forces to act at distinct instants, and to cease to act in the intervals between; and then, the aggregate of such intervals to make up a finite time, during which an aggregate force acts. But if the action of the force be rigorously continuous, it will easily be seen that all the consequences as to cause and effect will be the same; the discontinuous action being merely the usual artifice by which, in mathematical reasonings, we obtain results respecting continuous changes. It will still be true, that the uniform motion which takes place after a continuous force has acted, is the effect subsequent to the cause; while the change which takes place at any instant by the action of the force, is the instantaneous effect simultaneous with the cause.

It may be objected, that this solution does not appear immediately to apply: for the motion of a clock is not uniform during any portion of the time. The parts move by intervals of varied motion and of rest; or by oscillations backwards and forwards; and the succession of forces which acts during any [199] oscillation, or any cycle of motion, is repeated during the succeeding oscillation or cycle, and so on indefinitely; and if an alteration be made in the parts, it is not a change once for all, but recurs in its operation in every cycle of the motion.

But it will be found that this circumstance does not prevent the same explanation from being still applicable with a slight modification. Instead of uniform motion in the intervals of causation, we shall have to speak of steady going: and instead of considering all the forces which affect the motion as causes of change of uniform motion, we shall have to speak of changes in the parts of the mechanism as causes of change of rate of going. With this modification, it will still be true, that any instantaneous cause produces its instantaneous effect simultaneously, while the permanent effect is subsequent to the change which is its cause. The steady going of the clock is assumed as a normal condition, in which it measures the progress of time; and in this assumption, the notion of cause and effect is not brought into view. But a steady rate thus denoting the mean passage of time, a change in the rate indicates a cause of change. The change of rate, as an instantaneous transition from one rate to another, is simultaneous with the change in the parts. But then the changed rate as a continued condition in which, no new change supervening, the rate again measures the progress of time, is subsequent to the change of parts, for it begins when that ends, and continues when the progress of that has ceased.

If, however, this be a satisfactory solution of the difficulty in the case of mechanism, how shall we apply the same views to the other cases? Growth, the effect of food, is subsequent to the act of taking food; disorder, the effect of poison, is subsequent to the introduction of poison into the system. Can we say that the animal would continue unchanged if it were not to take food; and that food is the cause of a change, namely, of growth? This is manifestly false; for if the animal were not to take food, it would soon perish. But the analogy of the former case, of the clock, will enable us to avoid this perplexity. As we assumed a steady rate of going in the clock to be the measure of time when we considered the effect of mechanism, so we assume a steady rate of action in the animal functions to be the measure of the progress of time when we consider the causes which act upon the [200] development and health of animals. Digestion, and of course nutrition, are a part of this normal condition; they are involved in the steady going of the animal mechanism, and we must suppose these functions to go regularly on, in order that the animal may preserve its character of animal. Food and digestion may be considered as causes of the continued existence of the animal, in the same way in which the form of the parts of a clock is the cause of the steady going of a clock. And when we come to consider causes of change, this kind of causation, which produces a normal condition of things, merely measuring the flow of time, is left out of our account. We can conceive an uniform condition of animal existence, the animal neither growing nor wasting. This being taken as the normal condition, any deviation from this condition indicates a cause, and is taken as the evidence and measure of the cause of change. And thus, in a growing animal, the food partly keeps the animal in continued animal existence, and partly, and in addition to this, causes its growth. Food, in the former view, is always circulating in the system, and is supposed to be uniformly administered; the cycles of nutrition being merged in the notion of uniform existence, as the oscillations of the pendulum in a clock are merged in the notion of uniform going; and the elementary steps of nutrition which are, in this view, supposed to take place at each instant, produce their instantaneous effect, for they are requisite in the cycle of animal processes which goes on from instant to instant. But on the other hand, in considering growth, we compare the state of an animal with a preceding state, and consider the nutriment taken in the intervening time as the cause of the change: hence this nutriment, as an aggregate, is considered as the cause of growth of the animal; and in this view the effect is subsequent to the cause. But yet here, as in the case of mechanism, the progressive effect is simultaneous, step by step, with the progressive cause. There is a series of operations; as for instance, intussusception, digestion, assimilation, growth: each of these is a progressive operation; and in the progress of each operation, the steps of the effect and the instantaneous forces are simultaneous. But the end of one operation is the beginning of the next, or at least in part, and hence we have time occupied by the succession. The end of intussusception is the beginning of digestion, the end of digestion the beginning of assimilation, [201] and so on. These aggregate effects succeed each other; and hence growth is subsequent to the taking of food; though each instantaneous force of animal life, no less than of mechanism, produces an effect simultaneous with its action. Each of these separate operations is an aggregate operation, and occupies time; and each aggregate effect is a condition of the action of the cause in the next operation.

Again; if an animal in a permanent condition, neither waxing nor wasting, may be taken as the normal state in which the functions of life measure time, in order that we may consider growth as an effect, to be referred to food as cause; we may, for other purposes, consider, as the normal condition, an animal waxing and then wasting, according to the usual law of animal life: and we must take this, the healthy progress of an animal, as our normal condition, if we have to consider causes which produce disease. If we have to refer the morbid condition of an animal to the influence of poison, for example, we must consider how far the condition deviates from what it would have been if the poison had not been taken into the frame. The usual progress of the animal functions including its growth, is the measure of time; the deviation from this usual progress is the indication of cause; and the effect of the poison is subsequent to the cause, because the poison acts through the cycle of the animal functions just mentioned, which occupies time; and because the taking the poison into the system, not any subsequent action of the animal forces in the system, is considered as the event which we must contemplate as a cause. To resume the analogy of the clock: the rate of the clock is altered by altering the parts; but this alteration itself may occupy time; as if we alter the rate of a clock by applying a drop of acid, which gradually eats off a part of the pendulum, the corrosion, as an aggregate effect, occupies time; and the rates before and after the change are separated by this time. But the application of the drop is the cause; and thus, in this case the final effect is subsequent to the cause, though here, as in the case of mechanism, the instantaneous forces always produce a simultaneous effect.

Thus we have in every case a uniform state, or a state which is considered as uniform, or at least normal; and which is taken as the indication and measure of time; and we have also change, [202] which is contemplated as a deviation from uniformity, and is taken as the indication and measure of cause. The uniform state may be one which never exists, being purely imaginary; as the case in which no forces act; and the case in which animal functions go on permanently, the animal neither growing nor wasting. The normal state may also be a state in which change is constantly taking place, as, in fact, even a state of motion is a state of change; such states also are, in a further sense, that of a clock going by starts, and that of an animal constantly growing: in these cases the changes are all merged in a wider view of uniformity, so that these are taken as the normal states. And in all these cases, successive changes which take place are separated by intervals of time, measured by the normal progress; and each change is produced by some simultaneous instantaneous cause. But taking the cause in a larger sense, we group these instantaneous causes, and perhaps omit in our contemplation some of the intervening intervals; and thus assign the cause to a preceding, and the effect to a succeeding time.

I may observe further, as a corollary from what has been said, that the measure of time is different, when we consider different kinds of causation; and in each case, is homogeneous with the changes which causation effects. In the consideration of mechanical causes, we measure time by mechanical changes;—by uniform motion, or uniform succession of cycles of motion; by the rotation of a wheel, or the oscillation of a pendulum. But if we have to consider physiological changes, the progress of time is physiologically measured;—by the normal progress of vital operations; by the circulation, digestion or development of the organized body; by the pulse, or by the growth. These different measures of time give to time, so far as it is exhibited by facts and events, a different character in the different cases. Phenomenal time has a different nature and essence according to the kind of the changes which we consider, and which gives us our sole phenomenal indication of cause.

I fear that I am travelling into matters too abstruse and metaphysical for the occasion: but before I conclude, I will present one other aspect of the subject.

In stating the difficulty, I referred to cases of moral as well as physical causation; as when prudence produces prosperity, or [203] when folly produces ruin. It may be asked, whether we are here to apply the same explanation;—whether we are to assume a normal condition of human existence, in which neither prudence nor folly are displayed, neither prosperity nor adversity produced;—whether we are to conceive the progress of such a state to measure the progress of time, and deviations from it to denote causes of the kind mentioned. It may be asked further, whether, if we do make this supposition, we can resolve the influence of such causes as prudence or imprudence into instantaneous acts, which produce their effects immediately: and which occupy time only by being separated by intervals of the inactive normal moral condition. To this I must here reply, that the discussion of such questions would carry me too far, and would involve speculations not included within the acknowledged domain of this Society, from which I therefore abstain. But I may say, before quitting the subject, that I do not think the suppositions above suggested are untenable; and that in order to include moral causation under the maxims of causation in general, we must necessarily make some such hypothesis. The peculiarity of that kind of causation which the will and the character exert, and which is exerted upon the will and the character, would make this case far more complex and difficult than those already considered; but, at the same time, would offer us the means of explaining what may seem harsh, in the above analogy. For instance, we should have to assume such a maxim as this: that in moral causation, time is not to be measured by the flow of mechanical or physiological events;—not by the clock, or by the pulse. Moral causation has its own clock, its own pulse, in the progress of man’s moral being; and by this measure of time is the relation of moral cause and effect to be defined.