[26] Dialogo, iii. p. 91.

The experimental proof that bodies, when they fall downwards, are uniformly accelerated, is (by Galileo) derived from the inclined plane; and therefore assumes the proposition, that if such uniform acceleration prevail in vertical motion, it will also hold when a body is compelled to describe an oblique rectilinear path. This proposition may be shown to be true, if (assuming by anticipation the Third Law of Motion, of which we shall shortly have to speak,) we introduce the conception of a uniform statical force as the cause of uniform acceleration. For the force on the inclined plane bears a constant proportion to the vertical force, and this proportion is known from statical considerations. But in the work of which we are speaking, Galileo does not introduce this abstract conception of force as the foundation of his doctrines. Instead of this, he proposes, as a postulate sufficiently evident to be made the basis of his reasonings, That bodies which descend down inclined planes of different inclinations, but of the same vertical height, all acquire the same velocity[27]. But when this postulate has been propounded by one of the persons of the dialogue, another interlocutor says, ‘You discourse very probably; but besides this likelihood, I wish to augment the probability so far, that it shall be almost as complete as a necessary demonstration.’ He then proceeds to describe a very ingenious and simple experiment, which shows that when a body is made to swing upwards at the end of [245] a string, it attains to the same height, whatever is the path it follows, so long as it starts from the lowest point with the same velocity. And thus Galileo’s postulate is experimentally confirmed, so far as the force of gravity can be taken as an example of the forces which the postulate contemplates: and conversely, gravity is proved to be a uniform force, so far as it can be considered clear that the postulate is true of uniform forces.

[27] Dialogo, iii. p. 36.

When we have introduced the conception and definition of accelerating force, Galileo’s postulate, that bodies descending down inclined planes of the same vertical height, acquire the same velocity, may, by a few steps of reasoning, be demonstrated to be true of uniform forces: and thus the proof that gravity, either in vertical or oblique motion, is a uniform force, is confirmed by the experiment above mentioned; as it also is, on like grounds, by many other experiments, made upon inclined planes and pendulums.

Thus the propriety of Galileo’s conception of a uniform force, and the doctrine that gravity is a uniform force, were confirmed by the same reasonings and experiments. We may make here two remarks; First, that the conception, when established and rightly stated, appears so simple as hardly to require experimental proof; a remark which we have already made with regard to the First Law of Motion: and Second, that the discovery of the real law of nature was made by assuming propositions which, without further proof, we should consider as very precarious, and as far less obvious, as well as less evident, than the law of nature in its simple form.

4. The Second Law of Motion.—When a body, instead of falling downwards from rest, is thrown in any direction, it describes a curve line, till its motion is stopped. In this, and in all other cases in which a body describes a curved path in free space, its motion is determined by the Second Law of Motion. The law, in its general form, is as follows:—When a body is thus cast forth and acted upon by a force in a direction [246] transverse to its motion, the result is, That there is combined with the motion with which the body is thrown, another motion, exactly the same as that which the same force would have communicated to a body at rest.

It will readily be understood that the basis of this law is the axiom already stated, that effects are measured by their causes. In virtue of this axiom, the effect of gravity acting upon a body in a direction transverse to its motion, must measure the accelerative or deflective force of gravity under those circumstances. If this effect vary with the varying velocity and direction of the body thus acted upon, the deflective force of gravity also will vary with those circumstances. The more simple supposition is, that the deflective force of gravity is the same, whatever be the velocity and direction of the body which is subjected to its influence: and this is the supposition which we find to be verified by facts. For example, a ball let fall from the top of a ship’s upright mast, when she is sailing steadily forward, will fall at the foot of the mast, just as if it were let fall while the ship were at rest; thus showing that the motion which gravity gives to the ball is compounded with the horizontal motion which the ball shares with the ship from the first. This general and simple conception of motions as compounded with one another, represents, it is proved, the manner in which the motion produced by gravity modifies any other motion which the body may previously have had.

The discussions which terminated in the general reception of this Second Law of Motion among mechanical writers, were much mixed up with the arguments for and against the Copernican system, which system represented the earth as revolving upon its axis. For the obvious argument against this system was, that if each point of the earth’s surface were thus in motion from west to east, a stone dropt from the top of a tower would be left behind, the tower moving away from it: and the answer was, that by this law of motion, the stone would have the earth’s motion impressed upon it, as well as that motion which would [247] arise from its gravity to the earth; and that the motion of the stone relative to the tower would thus be the same as if both earth and tower were at rest. Galileo further urged, as a presumption in favour of the opinion that the two motions,—the circular motion arising from the rotation of the earth, and the downward motion arising from the gravity of the stone, would be compounded in the way we have described, (neither of them disturbing or diminishing the other,)—that the first motion was in its own nature not liable to any change or diminution[28], as we learn from the First Law of Motion. Nor was the subject lightly dismissed. The experiment of the stone let fall from the top of the mast was made in various forms by Gassendi; and in his Epistle, De Motu impresso a Motore translato, the rule now in question is supported by reference to these experiments. In this manner, the general truth, the Second Law of Motion, was established completely and beyond dispute.

[28] Dialogo, ii. p. 114.

But when this law had been proved to be true in a general sense, with such accuracy as rude experiments, like those of Galileo and Gassendi, would admit, it still remained to be ascertained (supposing our knowledge of the law to be the result of experience alone,) whether it were true with that precise and rigorous exactness which more refined modes of experimenting could test. We so willingly believe in the simplicity of laws of nature, that the rigorous accuracy of such a law, known to be at least approximately true, was taken for granted, till some ground for suspecting the contrary should appear. Yet calculations have not been wanting which might confirm the law as true to the last degree of accuracy. Laplace relates (Syst. du Monde, livre iv. chap. 16,) that at one time he had conceived it possible that the effect of gravity upon the moon might be slightly modified by the moon’s direction and velocity; and that in this way an explanation might be found for the moon’s acceleration (a deviation of her observed from her calculated place, which long [248] perplexed mathematicians). But it was after some time discovered that this feature in the moon’s motion arose from another cause; and the second law of motion was confirmed as true in the most rigorous sense.