This principle, which, as we have seen, is accepted as evident by the common understanding of mankind, is confirmed by all additional reflection and discipline of the mind, and is the foundation of all the theories which have been proposed concerning the processes by which the perception takes place, and concerning the modifications of the qualities thus perceived. The medium, and the mode in which the impression is conveyed through the medium, seem to be different for different qualities; but the existence of the medium leads to certain necessary conditions or alternatives, which have successively made their appearance in science, in the course of the attempts of men to theorize concerning the principal secondary qualities, sound, light, and heat. We must now point out some of the ways, at first imperfect and erroneous, in which the consequences of the fundamental assumption were traced.

2. Sound.—In all cases the medium of sensation, whatever it is, is supposed to produce the effect of conveying secondary qualities to our perception by means of its primary qualities. It was conceived to operate [323] by the size, form, and motion of its parts. This is a fundamental principle of the class of sciences of which we have at present to speak.

It was assumed from the first, as we have seen in the passage lately quoted from Aristotle[21], that in the conveyance of sound, the medium of communication was the air. But although the first theorists were right so far, that circumstance did not prevent their going entirely wrong when they had further to determine the nature of the process. It was conceived by Aristotle that the air acted after the manner of a rigid body;—like a staff, which, receiving an impulse at one end, transmits it to the other. Now this is altogether an erroneous view of the manner in which the air conveys the impulse by which sound is perceived. An approach was made to the true view of this process, by assimilating it to the diffusion of the little circular waves which are produced on the surface of still water when a stone is dropt into it. These little waves begin from the point thus disturbed, and run outwards, expanding on every side, in concentric circles, till they are lost. The propagation of sound through the air from the point where it is produced, was compared by Vitruvius to this diffusion of circular waves in water; and thus the notion of a propagation of impulse by the waves of a fluid was introduced, in the place of the former notion of the impulse of an unyielding body.

[21] Supr. [p. 297].

But though, taking an enlarged view of the nature of the progress of a wave, this is a just representation of the motion of air in conveying sound, we cannot suppose that the process was, at the period of which we speak, rightly understood. For the waves of water were contemplated only as affecting the surface of the water; and as the air has no surface, the communication must take place by means of an internal motion, which can bear only a remote and obscure resemblance to the waves which we see. And even with regard to the waves of water, the mechanism by which they are [324] produced and transferred was not at all understood; so that the comparison employed by Vitruvius must be considered rather as a loose analogy than as an exact scientific explanation.

No correct account of such motions was given, till the formation of the science of Mechanics in modern times had enabled philosophers to understand more distinctly the mode in which motion is propagated through a fluid, and to discern the forces which the process calls into play, so as to continue the motion once begun. Newton introduced into this subject the exact and rigorous conception of an Undulation, which is the true key to the explanation of impulses conveyed through a fluid.

Even at the present day, the right apprehension of the nature of an Undulation transmitted through a fluid is found to be very difficult for all persons except those whose minds have been duly disciplined by mathematical studies. When we see a wave run along the surface of water, we are apt to imagine at first that a portion of the fluid is transferred bodily from one place to another. But with a little consideration we may easily satisfy ourselves that this is not so: for if we look at a field of standing corn, when a breeze blows over it, we see waves like those of water run along its surface. Yet it is clear that in this case the separate stalks of corn only bend backwards and forwards, and no portion of the grain is really conveyed from one part of the field to the other. This is obvious even to popular apprehension. The poet speaks of

. . . . The rye,
That stoops its head when whirlwinds rave
And springs again in eddying wave
As each wild gust sweeps by.

Each particle of the mass in succession has a small motion backwards and forwards; and by this means a large ridge made by many such particles runs along the mass to any distance. This is the true conception of an undulation in general.

Thus, when an Undulation is propagated in a fluid, it is not matter, but form, which is transmitted from [325] one place to another. The particles along the line of each wave assume a certain arrangement, and this arrangement passes from one part to another, the particles changing their places only within narrow limits, so as to lend themselves successively to the arrangements by which the successive waves, and the intervals between the waves, are formed.