[27] Harmonia, lib. ii. prop. 19.

The pursuit of these numerical relations of tones forms the science of Harmonics; of which here we do not pretend to give an account, but only to show, how the invention of a Scale and Nomenclature, a Standard and Measure of the tone of sounds, is its necessary basis. We will therefore now proceed to speak of another subject; colour.

Sect. III.—Scales of Colour.

5. The Prismatic Scale of Colour.—A Scale of Colour must depend originally upon differences [340] discernible by the eye, as a scale of notes depends on differences perceived by the ear. In one respect the difficulty is greater in the case of the visible qualities, for there are no relations of colour which the eye peculiarly singles out and distinguishes, as the ear selects and distinguishes an octave or a fifth. Hence we are compelled to take an arbitrary scale; and we have to find one which is fixed, and which includes a proper collection of colours. The prismatic spectrum, or coloured image produced when a small beam of light passes obliquely through any transparent surface (as the surface of a prism of glass,) offers an obvious Standard as far as it is applicable. Accordingly colours have, for various purposes, been designated by their place in the spectrum, ever since the time of Newton; and we have thus a means of referring to such colours as are included in the series red, orange, yellow, green, blue, violet, indigo, and the intermediate tints.

But this scale is not capable of numerical precision. If the spectrum could be exactly defined as to its extremities, and if these colours occupied always the same proportional part of it, we might describe any colour in the above series by the measure of its position. But the fact is otherwise. The spectrum is too indefinite in its boundaries to afford any distinct point from which we may commence our measures; and moreover the spectra produced by different transparent bodies differ from each other. Newton had supposed that the spectrum and its parts were the same, so long as the refraction was the same; but his successors discovered that, with the same amount of refraction in different kinds of glass, there are different magnitudes of the spectrum; and what is still worse with reference to our present purpose, that the spectra from different glasses have the colours distributed in different proportions. In order, therefore, to make the spectrum the scale of colour, we must assume some fixed substance; for instance, we may take water, and thus a series approaching to the colours of the rainbow will be our standard. But we should still have an extreme difficulty in applying such a rule. The distinctions of [341] colour which the terms of common language express, are not used with perfect unanimity or with rigorous precision. What one person calls bluish green another calls greenish blue. Nobody can say what is the precise boundary between red and orange. Thus the prismatic scale of colour was incapable of mathematical exactness, and this inconvenience was felt up to our own times.

But this difficulty was removed by a curious discovery of Wollaston and Fraunhofer; who found that there are, in the solar spectrum, certain fine black Lines which occupy a definite place in the series of colours, and can be observed with perfect precision. We have now no uncertainty as to what coloured light we are speaking of, when we describe it as that part of the spectrum in which Fraunhofer’s Line c or d occurs. And thus, by this discovery, the prismatic spectrum of sunlight became, for certain purposes, an exact Chromatometer.

6. Newton’s Scale of Colours.—Still, such a standard, though definite, is arbitrary and seemingly anomalous. The lines a, b, c, d, &c., of Fraunhofer’s spectrum are distributed without any apparent order or law; and we do not, in this way, obtain numerical measures, which is what, in all cases, we desire to have. Another discovery of Newton, however, gives us a spectrum containing the same colours as the prismatic spectrum, but produced in another way, so that the colours have a numerical relation. I speak of the laws of the Colours of Thin Plates. The little rainbows which we sometimes see in the cracks of broken glass are governed by fixed and simple laws. The kind of colour produced at any point depends on the thickness of the thin plate of air included in the fissure. If the thickness be eight-millionths of an inch, the colour is orange, if fifteen-millionths of an inch, we have green, and so on; and thus these numbers, which succeed each other in a regular order from red to indigo, give a numerical measure of each colour; which measure, when we pursue the subject, we find is one of the bases of all optical theory. The series of colours obtained from plates of air of gradually increasing thickness is called [342] Newton’s Scale of Colours; but we may observe that this is not precisely what we are here speaking of, a scale of simple colours; it is a series produced by certain combinations, resulting from the repetition of the first spectrum, and is mainly useful as a standard for similar phenomena, and not for colour in general. The real scale of colour is to be found, as we have said, in the numbers which express the thickness of the producing film;—in the length of a fit in Newton’s phraseology, or the length of an undulation in the modern theory.

7. Scales of Impure Colours.—The standards just spoken of include (mainly at least) only pure and simple colours; and however complete these standards may be for certain objects of the science of optics, they are insufficient for other purposes. They do not enable us to put in their place mixed and impure colours. And there is, in the case of colour, a difficulty already noticed, which does not occur in the case of sound; two notes, when sounded together, are not necessarily heard as one; they are recognized as still two, and as forming a concord or a discord. But two colours form a single colour; and the eye cannot, in any way, distinguish between a green compound of blue and yellow, and the simple, undecomposable green of the spectrum. By composition of three or more colours, innumerable new colours may be generated which form no part of the prismatic series; and by such compositions is woven the infinitely varied web of colour which forms the clothing of nature. How are we to classify and arrange all the possible colours of objects, so that each shall have a place and name? How shall we find a chromatometer for impure as well as for pure colour?

Though no optical investigations have depended on a scale of impure colours, such a scale has been wanted and invented for other purposes; for instance, in order to identify and describe objects of natural history. Not to speak of earlier essays, we may notice Werner’s Nomenclature of Colours, devised for the purpose of describing minerals. This scale of colour was far superior to any which had previously been promulgated. [343] It was, indeed, arbitrary in the selection of its degrees, and in a great measure in their arrangement; and the colours were described by the usual terms, though generally with some added distinction; as blackish green, bluish green, apple-green, emerald-green. But the great merit of the scale was its giving a fixed conventional meaning to these terms, so that they lost much of their usual vagueness. Thus apple-green did not mean the colour of any green apple casually taken; but a certain definite colour which the student was to bear in mind, whether or not he had ever seen an apple of that exact hue. The words were not a description, but a record of the colour: the memory was to retain a sensation, not a name.

The imperfection of the system (arising from its arbitrary form) was its incompleteness: however well it served for the reference of the colours which it did contain, it was applicable to no others; and thus though Werner’s enumeration extended to more than a hundred colours, there occur in nature a still greater number which cannot be exactly described by means of it.