I may remark, also, that the same conclusion would follow by the same reasoning, if any kind of matter, instead of being void of weight, were heavy, indeed, but not so heavy, in proportion to its quantity of matter, as other kinds.
On all these hypotheses there would be no possibility of measuring quantity of matter by weight at all, in any case, or to any extent.
But it may be urged, that we have not yet reduced the hypothesis of matter without weight to a contradiction; for that mathematicians measure quantity of matter, not by weight, but by the other property, of which we have spoken, inertia.
To this I reply, that, practically speaking, quantity of matter is always measured by weight, both by mechanicians and chemists: and as we have proved that this procedure is utterly insecure in all cases, on the hypothesis of weightless matter, the practice rests upon a conviction that the hypothesis is false. And yet the practice is universal. Every experimenter measures quantity of matter by the balance. No one has ever thought of measuring quantity of matter by its inertia practically: no one has constructed a measure of quantity of matter in which the matter produces its indications of quantity by its motion. When we have to take into account the inertia of a body, we inquire what its weight is, and assume this as the measure of the inertia; but we never take the contrary course, and ascertain the inertia first in order to determine by that means the weight.
But it may be asked, Is it not then true, and an important scientific truth, that the quantity of matter is measured by the inertia? Is it not true, and proved by experiment, that the weight is proportional to the inertia? If this be not the result of Newton's experiments mentioned above, what, it may be demanded, do they prove?
To these questions I reply: It is true that quantity of matter is measured by the inertia, for it is true that inertia is as the quantity of matter. This truth is indeed one of the laws of motion. That weight is proportional to inertia is proved by experiment, as far as the laws of motion are so proved: and Newton's experiments prove one of the laws of motion, so far as any experiments can prove them, or are needed to prove them.
That inertia is proportional to weight, is a law equivalent to that law which asserts, that when pressure produces motion in a given body, the velocity produced in a given time is as the pressure. For if the velocity be as the pressure, when the body is given, the velocity will be constant if the inertia also be as the pressure. For the inertia is understood to be that property of bodies to which, ceteris paribus, the velocity impressed is inversely proportional. One body has twice as much inertia as another, if, when the same force acts upon it for the same time, it acquires but half the velocity. This is the fundamental conception of inertia.
In Newton's pendulum experiments, the pressure producing motion was a certain resolved part of the weight, and was proportional to the weight. It appeared by the experiments, that whatever were the material of which the pendulum was formed, the rate of oscillation was the same; that is, the velocity acquired was the same. Hence the inertia of the different bodies must have been in each case as the weight: and thus this assertion is true of all different kinds of bodies.
Thus it appears that the assertion, that inertia is universally proportional to weight, is equivalent to the law of motion, that the velocity is as the pressure. The conception of inertia (of which, as we have said, the fundamental conception is, that the velocity impressed is inversely proportional to the inertia,) connects the two propositions so as to make them identical.
Hence our argument with regard to the universal gravity of matter brings us to the above law of motion, and is proved by Newton's experiments in the same sense in which that law of motion is so proved.