6. Benedetti.—But the writers on Mechanics were naturally led to present themselves as innovators and experimenters; for all that the ancients had taught concerning the doctrine of motion was erroneous; while those who sought their knowledge from experiment, were constantly led to new truths. John Baptist Benedetti, a Venetian nobleman, in 1599, published his Speculationum Liber, containing, among other matter, a treatise on Mechanics, in which several of the Aristotelian errors were refuted. In the Preface to this Treatise, he says, "Many authors have written much, and with great ability, on Mechanics; but since nature is constantly bringing to light something either new, or before unnoticed, I too wished to put forth a few things hitherto unattempted, or not sufficiently explained." In the doctrine of motion he distinctly and at some length condemns and argues against all the Aristotelian doctrines concerning motion, weight, and many other fundamental principles of physics. Benedetti is also an adherent of the Copernican doctrine. He states[136] the enormous velocity which the heavenly bodies must have, if the earth be the centre of their motions; and adds, "which difficulty does not occur according to the beautiful theory of the Samian Aristarchus, expounded in a divine manner by Nicolas Copernicus; against which the reasons alleged by Aristotle are of no weight." Benedetti throughout shows no want of the courage or ability which were needed in order to rise in opposition against the dogmas of the Peripatetics. He does not, however, refer to experiment in a very direct manner; indeed most of the facts on which the elementary truths of mechanics rest, were known and admitted by the Aristotelians; and therefore could not be adduced as novelties. On the contrary, he begins with à priori maxims, which experience would not have confirmed. "Since," he says[137], "we have undertaken the task of proving that Aristotle is wrong in his opinions concerning motion, there are certain absolute truths, the objects of the intellect known of themselves, which we must lay down in the first place." And then, as an example of these truths, he states this: "Any two bodies of equal size and figure, but of different materials, will have their natural velocities in the same proportion as their weights;" where by their natural velocities, he means the velocities with which they naturally fall downwards.

7. Gilbert.—The greatest of these practical reformers of science is our countryman, William Gilbert; if, indeed, in virtue of the clear views of the prospects which were then opening to science, and of the methods by which her future progress was to be secured, while he exemplified those views by physical discoveries, he does not rather deserve the still higher praise of being at the same time a theoretical and a practical reformer. Gilbert's physical researches and speculations were employed principally upon subjects on which the ancients had known little or nothing; and on which therefore it could not be doubtful whether tradition or observation was the source of knowledge. Such was magnetism; for the ancients were barely acquainted with the attractive property of the magnet. Its polarity, including repulsion as well as attraction, its direction towards the north, its limited variation from this direction, its declination from the horizontal position, were all modern discoveries. Gilbert's work[138] on the magnet and on the magnetism of the earth, appeared in 1600; and in this, he repeatedly maintains the superiority of experimental knowledge over the physical philosophy of the ancients. His preface opens thus: "Since in making discoveries and searching out the hidden causes of things, stronger reasons are obtained from trustworthy experiments and demonstrable arguments, than from probable conjectures and the dogmas of those who philosophize in the usual manner," he has, he says, "endeavoured to proceed from common magnetical experiments to the inward constitution of the earth." As I have stated in the History of Magnetism[139], Gilbert's work contains all the fundamental facts of that science, so fully stated, that we have, at this day, little to add to them. He is not, however, by the advance which he thus made, led to depreciate the ancients, but only to claim for himself the same liberty of philosophizing which they had enjoyed[140]. "To those ancient and first parents of philosophy, Aristotle, Theophrastus, Ptolemy, Hippocrates, Galen, be all due honour; from them it was that the stream of wisdom has been derived down to posterity. But our age has discovered and brought to light many things which they, if they were yet alive, would gladly embrace. Wherefore we also shall not hesitate to expound, by probable hypotheses, those things which by long experience we have ascertained."

In this work the author not only adopts the Copernican doctrine of the earth's motion, but speaks[141] of the contrary supposition as utterly absurd, founding his argument mainly on the vast velocities which such a supposition requires us to ascribe to the celestial bodies. Dr. Gilbert was physician to Queen Elizabeth and to James the First, and died in 1603. Some time after his death the executors of his brother published another work of his, De Mundo nostro Sublunari Philosophia Nova, in which similar views are still more comprehensively presented. In this he says, "The two lords of philosophy, Aristotle and Galen, are held in worship like gods, and rule the schools;—the former by some destiny obtained a sway and influence among philosophers, like that of his pupil Alexander among the kings of the earth;—Galen, with like success, holds his triumph among the physicians of Europe." This comparison of Aristotle to Alexander was also taken hold of by Bacon. Nor is Gilbert an unworthy precursor of Bacon in the view he gives of the History of Science, which occupies the first three chapters of his Philosophy. He traces this history from "the simplicity and ignorance of the ancients," through "the fabrication of the fable of the four elements," to Aristotle and Galen. He mentions with due disapproval the host of commentators which succeeded, the alchemists, the "shipwreck of science in the deluge of the Goths," and the revival of letters and genius in the time of "our grandfathers." "This later age," he says, "has exploded the Barbarians, and restored the Greeks and Latins to their pristine grace and honour. It remains, that if they have written aught in error, this should be remedied by better and more productive processes (frugiferis institutis), not to be contemned for their novelty; (for nothing which is true is really new, but is perfect from eternity, though to weak man it may be unknown;) and that thus Philosophy may bear her fruit." The reader of Bacon will not fail to recognize, in these references to "fruit-bearing" knowledge, a similarity of expression with the Novum Organon.

Bacon does not appear to me to have done justice to his contemporary. He nowhere recognizes in the labours of Gilbert a community of purpose and spirit with his own. On the other hand, he casts upon him a reflection which he by no means deserves. In the Advancement of Learning[142], he says, "Another error is, that men have used to infect their meditations, opinions, and doctrines, with some conceits which they have most admired, or some sciences to which they have most applied; and given all things else a tincture according to them, utterly untrue and improper.... So have the alchemists made a philosophy out of a few experiments of the furnace; and Gilbertus, our countryman, hath made a philosophy out of the observations of a loadstone," (in the Latin, philosophiam etiam e magnete elicuit). And in the same manner he mentions him in the Novum Organon[143], as affording an example of an empirical kind of philosophy, which appears to those daily conversant with the experiments, probable, but to other persons incredible and empty. But instead of blaming Gilbert for disturbing and narrowing science by a too constant reference to magnetical rules, we might rather censure Bacon, for not seeing how important in all natural philosophy are those laws of attraction and repulsion of which magnetical phenomena are the most obvious illustration. We may find ground for such a judgment in another passage in which Bacon speaks of Gilbert. In the Second Book[144] of the Novum Organon, having classified motions, he gives, as one kind, what he calls, in his figurative language, motion for gain, or motion of need, by which a body shuns heterogeneous, and seeks cognate bodies. And he adds, "The Electrical operation, concerning which Gilbert and others since him have made up such a wonderful story, is nothing less than the appetite of a body, which, excited by friction, does not well tolerate the air, and prefers another tangible body if it be found near." Bacon's notion of an appetite in the body is certainly much less philosophical than Gilbert's, who speaks of light bodies as drawn towards amber by certain material radii[145]; and we might perhaps venture to say that Bacon here manifests a want of clear mechanical ideas. Bacon, too, showed his inferior aptitude for physical research in rejecting the Copernican doctrine which Gilbert adopted. In the Advancement of Learning[146], suggesting a history of the opinions of philosophers, he says that he would have inserted in it even recent theories, as those of Paracelsus; of Telesius, who restored the philosophy of Parmenides; or Patricius, who resublimed the fumes of Platonism; or Gilbert, who brought back the dogmas of Philolaus. But Bacon quotes[147] with pleasure Gilbert's ridicule of the Peripatetics' definition of heat. They had said, that heat is that which separates heterogeneous and unites homogeneous matter; which, said Gilbert, is as if any one were to define man as that which sows wheat and plants vines.

Galileo, another of Gilbert's distinguished contemporaries, had a higher opinion of him. He says[148], "I extremely admire and envy this author. I think him worthy of the greatest praise for the many new and true observations which he has made, to the disgrace of so many vain and fabling authors; who write, not from their own knowledge only, but repeat everything they hear from the foolish and vulgar, without attempting to satisfy themselves of the same by experience; perhaps that they may not diminish the size of their books."

8. Galileo.—Galileo was content with the active and successful practice of experimental inquiry; and did not demand that such researches should be made expressly subservient to that wider and more ambitious philosophy, on which the author of the Novum Organon employed his powers. But still it now becomes our business to trace those portions of Galileo's views which have reference to the theory, as well as the practice, of scientific investigation. On this subject, Galileo did not think more profoundly, perhaps, than several of his contemporaries; but in the liveliness of expression and illustration with which he recommended his opinions on such topics, he was unrivalled. Writing in the language of the people, in the attractive form of dialogue, with clearness, grace, and wit, he did far more than any of his predecessors had done to render the new methods, results, and prospects of science familiar to a wide circle of readers, first in Italy, and soon, all over Europe. The principal points inculcated by him were already becoming familiar to men of active and inquiring minds; such as,—that knowledge was to be sought from observation, and not from books;—that it was absurd to adhere to, and debate about, the physical tenets of Aristotle and the rest of the ancients. On persons who followed this latter course, Galileo fixed the epithet of Paper Philosophers[149]; because, as he wrote in a letter to Kepler, this sort of men fancied that philosophy was to be studied like the Æneid or Odyssey, and that the true reading of nature was to be detected by the collation of texts. Nothing so much shook the authority of the received system of Physics as the experimental discoveries, directly contradicting it, which Galileo made. By experiment, as I have elsewhere stated[150], he disproved the Aristotelian doctrine that bodies fall quickly or slowly in proportion to their weight. And when he had invented the telescope, a number of new discoveries of the most striking kind (the inequalities of the moon's surface, the spots in the sun, the moon-like phases of Venus, the satellites of Jupiter, the ring of Saturn,) showed, by the evidence of the eyes, how inadequate were the conceptions, and how erroneous the doctrines of the ancients, respecting the constitution of the universe. How severe the blow was to the disciples of the ancient schools, we may judge by the extraordinary forms of defence in which they tried to intrench themselves. They would not look through Galileo's glasses; they maintained that what was seen was an illusion of witchcraft; and they tried, as Galileo says[151], with logical arguments, as if with magical incantations, to charm the new planets out of the sky. No one could be better fitted than Galileo for such a warfare. His great knowledge, clear intellect, gaiety, and light irony, (with the advantage of being in the right,) enabled him to play with his adversaries as he pleased. Thus when an Aristotelian[152] rejected the discovery of the irregularities in the moon's surface, because, according to the ancient doctrine, her form was a perfect sphere, and held that the apparent cavities were filled with an invisible crystal substance, Galileo replied, that he had no objection to assent to this, but that then he should require his adversary in return to believe that there were on the same surface invisible crystal mountains ten times as high as those visible ones which he had actually observed and measured.

We find in Galileo many thoughts which have since become established maxims of modern philosophy. "Philosophy," he says[153], "is written in that great book, I mean the Universe, which is constantly open before our eyes; but it cannot be understood, unless we first know the language and learn the characters in which it is written." With this thought he combines some other lively images. One of his interlocutors says concerning another, "Sarsi perhaps thinks that philosophy is a book made up of the fancies of men, like the Iliad or Orlando Furioso, in which the matter of least importance is, that what is written be true." And again, with regard to the system of authority, he says, "I think I discover in him a firm belief that, in philosophizing, it is necessary to lean upon the opinion of some celebrated author; as if our mind must necessarily remain unfruitful and barren till it be married to another man's reason."—"No," he says, "the case is not so.—When we have the decrees of Nature, authority goes for nothing; reason is absolute[154]."

In the course of Galileo's controversies, questions of the logic of science came under discussion. Vincenzio di Grazia objected to a proof from induction which Galileo adduced, because all the particulars were not enumerated; to which the latter justly replies[155], that if induction were required to pass through all the cases, it would be either useless or impossible;—impossible when the cases are innumerable; useless when they have each already been verified, since then the general proposition adds nothing to our knowledge.

One of the most novel of the characters which Science assumes in Galileo's hands is, that she becomes cautious. She not only proceeds leaning upon Experience, but she is content to proceed a little way at a time. She already begins to perceive that she must rise to the heights of knowledge by many small and separate steps. The philosopher is desirous to know much, but resigned to be ignorant for a time of that which cannot yet be known. Thus when Galileo discovered the true law of the motion of a falling body[156], that the velocity increases proportionally to the time from the beginning of the fall, he did not insist upon immediately assigning the cause of this law. "The cause of the acceleration of the motions of falling bodies is not," he says, "a necessary part of the investigation." Yet the conception of this acceleration, as the result of the continued action of the force of gravity upon the falling body, could hardly fail to suggest itself to one who had formed the idea of force. In like manner, the truth that the velocities, acquired by bodies falling down planes of equal heights, are all equal, was known to Galileo and his disciples, long before he accounted for it[157], by the principle, apparently so obvious, that the momentum generated is as the moving force which generates it. He was not tempted to rush at once, from an experimental truth to a universal system. Science had learnt that she must move step by step; and the gravity of her pace already indicated her approaching maturity and her consciousness of the long path which lay before her.

But besides the genuine philosophical prudence which thus withheld Galileo from leaping hastily from one inference to another, he had perhaps a preponderating inclination towards facts; and did not feel, so much as some other persons of his time, the need of reducing them to ideas. He could bear to contemplate laws of motion without being urged by an uncontrollable desire to refer them to conceptions of force.