The causes to be assigned for this remarkable result are, I conceive, the following. In the first place, the physicists of the Cartesian school did, as I have just stated, found their philosophy upon experiment, and did not practically, or indeed, most of them, theoretically, assent to their master's boast of showing what the phenomena must be, instead of looking to see what they are. And as Descartes had really incorporated in his philosophy all the chief physical discoveries of his own and preceding times, and had delivered, in a more general and systematic shape than any one before him, the principles which he thus established, the physical philosophy of his school was in reality far the best then current; and was an immense improvement upon the Aristotelian doctrines, which had not yet been displaced as a system. Another circumstance which gained him much favour, was the bold and ostentatious manner in which he professed to begin his philosophy by liberating himself from all preconceived prejudice. The first sentence of his philosophy contains this celebrated declaration: "Since," he says, "we begin life as infants, and have contracted various judgments concerning sensible things before we possess the entire use of our reason, we are turned aside from the knowledge of truth by many prejudices: from which it does not appear that we can be any otherwise delivered, than if once in our life we make it our business to doubt of everything in which we discern the smallest suspicion of uncertainty." In the face of this sweeping rejection or unhesitating scrutiny of all preconceived opinions, the power of the ancient authorities and masters in philosophy must obviously shrink away; and thus Descartes came to be considered as the great hero of the overthrow of the Aristotelian dogmatism. But in addition to these causes, and perhaps more powerful than all in procuring the assent of men to his doctrines, came the deductive and systematic character of his philosophy. For although all knowledge of the external world is in reality only to be obtained from observation, by inductive steps,—minute, perhaps, and slow, and many, as Galileo and Bacon had already taught;—the human mind conforms to these conditions reluctantly and unsteadily, and is ever ready to rush to general principles, and then to employ itself in deducing conclusions from these by synthetical reasonings; a task grateful, from the distinctness and certainty of the result, and the accompanying feeling of our own sufficiency. Hence men readily overlooked the precarious character of Descartes' fundamental assumptions, in their admiration of the skill with which a varied and complex Universe was evolved out of them. And the complete and systematic character of this philosophy attracted men no less than its logical connexion. I may quote here what a philosopher[209] of our own time has said of another writer: "He owed his influence to various causes; at the head of which may be placed that genius for system which, though it cramps the growth of knowledge, perhaps finally atones for that mischief by the zeal and activity which it rouses among followers and opponents, who discover truth by accident when in pursuit of weapons for their warfare. A system which attempts a task so hard as that of subjecting vast provinces of human knowledge to one or two principles, if it presents some striking instances of conformity to superficial appearances, is sure to delight the framer; and for a time to subdue and captivate the student too entirely for sober reflection and rigorous examination. In the first instance consistency passes for truth. When principles in some instances have proved sufficient to give an unexpected explanation of facts, the delighted reader is content to accept as true all other deductions from the principles. Specious premises being assumed to be true, nothing more can be required than logical inference. Mathematical forms pass current as the equivalent of mathematical certainty. The unwary admirer is satisfied with the completeness and symmetry of the plan of his house, unmindful of the need of examining the firmness of the foundation and the soundness of the materials. The system-maker, like the conqueror, long dazzles and overawes the world; but when their sway is past, the vulgar herd, unable to measure their astonishing faculties, take revenge by trampling on fallen greatness." Bacon showed his wisdom in his reflections on this subject, when he said that "Method, carrying a show of total and perfect knowledge, hath a tendency to generate acquiescence."

The main value of Descartes' physical doctrines consisted in their being arrived at in a way inconsistent with his own professed method, namely, by a reference to observation. But though he did in reality begin from facts, his system was nevertheless a glaring example of that error which Bacon had called Anticipation; that illicit generalization which leaps at once from special facts to principles of the widest and remotest kind; such, for instance, as the Cartesian doctrine, that the world is an absolute plenum, every part being full of matter of some kind, and that all natural effects depend on the laws of motion. Against this fault, to which the human mind is so prone, Bacon had lifted his warning voice in vain, so far as the Cartesians were concerned; as indeed, to this day, one theorist after another pursues his course, and turns a deaf ear to the Verulamian injunctions; perhaps even complacently boasts that he founds his theory upon observation; and forgets that there are, as the aphorism of the Novum Organon declares, two ways by which this may be done;—the one hitherto in use and suggested by our common tendencies, but barren and worthless; the other almost untried, to be pursued only with effort and self-denial, but alone capable of producing true knowledge.

3. Gassendi.—Thus the lessons which Bacon taught were far from being generally accepted and applied at first. The amount of the influence of these two men, Bacon and Descartes, upon their age, has often been a subject of discussion. The fortunes of the Cartesian school have been in some measure traced in the History of Science. But I may mention the notice taken of these two philosophers by Gassendi, a contemporary and countryman of Descartes. Gassendi, as I have elsewhere stated[210], was associated with Descartes in public opinion, as an opponent of the Aristotelian dogmatism; but was not in fact a follower or profound admirer of that writer. In a Treatise on Logic, Gassendi gives an account of the Logic of various sects and authors; treating, in order, of the Logic of Zeno (the Eleatic), of Euclid (the Megarean), of Plato, of Aristotle, of the Stoics, of Epicurus, of Lullius, of Ramus; and to these he adds the Logic of Verulam, and the Logic of Cartesius. "We must not," he says, "on account of the celebrity it has obtained, pass over the Organon or Logic of Francis Bacon Lord Verulam, High Chancellor of England, whose noble purpose in our time it has been, to make an Instauration of the Sciences." He then gives a brief account of the Novum Organon, noticing the principal features in its rules, and especially the distinction between the vulgar induction which leaps at once from particular experiments to the more general axioms, and the chastised and gradual induction, which the author of the Organon recommends. In his account of the Cartesian Logic, he justly observes, that "He too imitated Verulam in this, that being about to build up a new philosophy from the foundation, he wished in the first place to lay aside all prejudice: and having then found some solid principle, to make that the groundwork of his whole structure. But he proceeds by a very different path from that which Verulam follows; for while Verulam seeks aid from things, to perfect the cogitation of the intellect, Cartesius conceives, that when we have laid aside all knowledge of things, there is, in our thoughts alone, such a resource, that the intellect may by its own power arrive at a perfect knowledge of all, even the most abstruse things."

The writings of Descartes have been most admired, and his method most commended, by those authors who have employed themselves upon metaphysical rather than physical subjects of inquiry. Perhaps we might say that, in reference to such subjects, this method is not so vicious as at first, when contrasted with the Baconian induction, it seems to be: for it might be urged that the thoughts from which Descartes begins his reasonings are, in reality, experiments of the kind which the subject requires us to consider: each such thought is a fact in the intellectual world; and of such facts, the metaphysician seeks to discover the laws. I shall not here examine the validity of this plea; but shall turn to the consideration of the actual progress of physical science, and its effect on men's minds.

4. Actual progress in Science.—The practical discoverers were indeed very active and very successful during the seventeenth century, which opened with Bacon's survey and exhortations. The laws of nature, of which men had begun to obtain a glimpse in the preceding century, were investigated with zeal and sagacity, and the consequence was that the foundations of most of the modern physical sciences were laid. That mode of research by experiment and observation, which had, a little time ago, been a strange, and to many, an unwelcome innovation, was now become the habitual course of philosophers. The revolution from the philosophy of tradition to the philosophy of experience was completed. The great discoveries of Kepler belonged to the preceding century. They are not, I believe, noticed, either by Bacon or by Descartes; but they gave a strong impulse to astronomical and mechanical speculators, by showing the necessity of a sound science of motion. Such a science Galileo had already begun to construct. At the time of which I speak, his disciples[211] were still labouring at this task, and at other problems which rapidly suggested themselves. They had already convinced themselves that air had weight; in 1643 Torricelli proved this practically by the invention of the Barometer; in 1647 Pascal proved it still further by sending the Barometer to the top of a mountain. Pascal and Boyle brought into clear view the fundamental laws of fluid equilibrium; Boyle and Mariotte determined the law of the compression of air as regulated by its elasticity. Otto Guericke invented the air-pump, and by his "Madgeburg Experiments" on a vacuum, illustrated still further the effects of the air. Guericke pursued what Gilbert had begun, the observation of electrical phenomena; and these two physicists made an important step, by detecting repulsion as well as attraction in these phenomena. Gilbert had already laid the foundations of the science of Magnetism. The law of refraction, at which Kepler had laboured in vain, was, as we have seen, discovered by Snell (about 1621), and published by Descartes. Mersenne had discovered some of the more important parts of the theory of Harmonics. In sciences of a different kind, the same movement was visible. Chemical doctrines tended to assume a proper degree of generality, when Sylvius in 1679 taught the opposition of acid and alkali, and Stahl, soon after, the phlogistic theory of combustion. Steno had remarked the most important law of crystallography in 1669, that the angles of the same kind of crystals are always equal. In the sciences of classification, about 1680, Ray and Morison in England resumed the attempt to form a systematic botany, which had been interrupted for a hundred years, from the time of the memorable essay of Cæsalpinus. The grand discovery of the circulation of the blood by Harvey about 1619, was followed in 1651 by Pecquet's discovery of the course of the chyle. There could now no longer be any question whether science was progressive, or whether observation could lead to new truths.

Among these cultivators of science, such sentiments as have been already quoted became very familiar;—that knowledge is to be sought from nature herself by observation and experiment;—that in such matters tradition is of no force when opposed to experience, and that mere reasonings without facts cannot lead to solid knowledge. But I do not know that we find in these writers any more special rules of induction and scientific research which have since been confirmed and universally adopted. Perhaps too, as was natural in so great a revolution, the writers of this time, especially the second-rate ones, were somewhat too prone to disparage the labours and talents of Aristotle and the ancients in general, and to overlook the ideal element of our knowledge, in their zealous study of phenomena. They urged, sometimes in an exaggerated manner, the superiority of modern times in all that regards science, and the supreme and sole importance of facts in scientific investigations. There prevailed among them also a lofty and dignified tone of speaking of the condition and prospects of science, such as we are accustomed to admire in the Verulamian writings; for this, in a less degree, is epidemic among those who a little after his time speak of the new philosophy.

5. Otto Guericke, &c.—I need not illustrate these characteristics at any great length. I may as an example notice Otto Guericke's Preface to his Experimenta Magdeburgica (1670). He quotes a passage from Kircher's Treatise on the Magnetic Art, in which the author says, "Hence it appears how all philosophy, except it be supported by experiments, is empty, fallacious, and useless; what monstrosities philosophers, in other respects of the highest and subtlest genius, may produce in philosophy by neglecting experiment. Thus Experience alone is the Dissolver of Doubts, the Reconciler of Difficulties, the sole Mistress of Truth, who holds a torch before us in obscurity, unties our knots, teaches us the true causes of things." Guericke himself reiterates the same remark, adding that "philosophers, insisting upon their own thoughts and arguments merely, cannot come to any sound conclusion respecting the natural constitution of the world." Nor were the Cartesians slow in taking up the same train of reflection. Thus Gilbert Clark who, in 1660, published[212] a defence of Descartes' doctrine of a plenum in the universe, speaks in a tone which reminds us of Bacon, and indeed was very probably caught from him: "Natural philosophy formerly consisted entirely of loose and most doubtful controversies, carried on in high-sounding words, fit rather to delude than to instruct men. But at last (by the favour of the Deity) there shone forth some more divine intellects, who taking as their counsellors reason and experience together, exhibited a new method of philosophizing. Hence has been conceived a strong hope that philosophers may embrace, not a shadow or empty image of Truth, but Truth herself: and that Physiology (Physics) scattering these controversies to the winds, will contract an alliance with Mathematics. Yet this is hardly the work of one age; still less of one man. Yet let not the mind despond, or doubt not that, one party of investigators after another following the same method of philosophizing, at last, under good auguries, the mysteries of nature being daily unlocked as far as human feebleness will allow, Truth may at last appear in full, and these nuptial torches may be lighted."

As another instance of the same kind, I may quote the preface to the First volume of the Transactions of the Academy of Sciences at Paris: "It is only since the present century," says the writer, "that we can reckon the revival of Mathematics and Physics. M. Descartes and other great men have laboured at this work with so much success, that in this department of literature, the whole face of things has been changed. Men have quitted a sterile system of physics, which for several generations had been always at the same point; the reign of words and terms is passed; men will have things; they establish principles which they understand, they follow those principles; and thus they make progress. Authority has ceased to have more weight than Reason: that which was received without contradiction because it had been long received, is now examined, and often rejected: and philosophers have made it their business to consult, respecting natural things, Nature herself rather than the Ancients." These had now become the commonplaces of those who spoke concerning the course and method of the Sciences.

6. Hooke.—In England, as might be expected, the influence of Francis Bacon was more directly visible. We find many writers, about this time, repeating the truths which Bacon had proclaimed, and in almost every case showing the same imperfections in their views which we have noticed in him. We may take as an example of this Hooke's Essay, entitled "A General Scheme or Idea of the present state of Natural Philosophy, and how its defects may be remedied by a Methodical proceeding in the making Experiments and collecting Observations; whereby to compile a Natural History as a solid basis for the superstructure of true Philosophy." This Essay may be looked upon as an attempt to adapt the Novum Organon to the age which succeeded its publication. We have in this imitation, as in the original, an enumeration of various mistakes and impediments which had in preceding times prevented the progress of knowledge; exhortations to experiment and observation as the only solid basis of Science; very ingenious suggestions of trains of inquiry, and modes of pursuing them; and a promise of obtaining scientific truths when facts have been duly accumulated. This last part of his scheme the author calls a Philosophical Algebra; and he appears to have imagined that it might answer the purpose of finding unknown causes from known facts, by means of certain regular processes, in the same manner as Common Algebra finds unknown from known quantities. But this part of the plan appears to have remained unexecuted. The suggestion of such a method was a result of the Baconian notion that invention in a discoverer might be dispensed with. We find Hooke adopting the phrases in which this notion is implied: thus he speaks of the understanding as "being very prone to run into the affirmative way of judging, and wanting patience to follow and prosecute the negative way of inquiry, by rejection of disagreeing natures." And he follows Bacon also in the error of attempting at once to obtain from the facts the discovery of a "nature," instead of investigating first the measures and the laws of phenomena. I return to more general notices of the course of men's thoughts on this subject.

7. Royal Society.—Those who associated themselves together for the prosecution of science quoted Bacon as their leader, and exulted in the progress made by the philosophy which proceeded upon his principles. Thus in Oldenburg's Dedication of the Transactions of the Royal Society of London for 1670, to Robert Boyle, he says; "I am informed by such as well remember the best and worst days of the famous Lord Bacon, that though he wrote his Advancement of Learning and his Instauratio Magna in the time of his greatest power, yet his greatest reputation rebounded first from the most intelligent foreigners in many parts of Christendom:" and after speaking of his practical talents and his public employments, he adds, "much more justly still may we wonder how, without any great skill in Chemistry, without much pretence to the Mathematics or Mechanics, without optic aids or other engines of late invention, he should so much transcend the philosophers then living, in judicious and clear instructions, in so many useful observations and discoveries, I think I may say beyond the records of many ages." And in the end of the Preface to the same volume, he speaks with great exultation of the advance of science all over Europe, referring undoubtedly to facts then familiar. "And now let envy snarl, it cannot stop the wheels of active philosophy, in no part of the known world;—not in France, either in Paris or in Caen;—not in Italy, either in Rome, Naples, Milan, Florence, Venice, Bononia or Padua;—in none of the Universities either on this or on that side of the seas, Madrid and Lisbon, all the best spirits in Spain and Portugal, and the spacious and remote dominions to them belonging;—the Imperial Court and the Princes of Germany; the Northern Kings and their best luminaries; and even the frozen Muscovite and Russian have all taken the operative ferment: and it works high and prevails every way, to the encouragement of all sincere lovers of knowledge and virtue."