These passages show that Barrow had read the Novum Organon in a careful and intelligent manner, and presumed his Cambridge hearers to be acquainted with the work. Nor is his judgment of Descartes less wise and philosophical. He rejects, as we have seen, his system as a true scheme of the universe, and condemns altogether his à priori mode of philosophizing; but this does not prevent his accepting Descartes' real discoveries, and admiring the boldness and vigour of his attempts to reform philosophy. There is, in Barrow's works, academic verse, as well as prose, on the subject of the Cartesian hypothesis. In this, Descartes himself is highly praised, though his doctrines are very partially accepted. The writer says: "Pardon us, great Cartesius, if the Muse resists you. Pardon! We follow you, Inquiring Spirit that you are, while we reject your system. As you have taught us free thought, and broken down the rule of tyranny, we undauntedly speculate, even in opposition to you."

Descartes is even yet spoken of, especially by French writers, as the person who first asserted and established the freedom of inquiry which is the boast of modern philosophy; but this is said with reference to metaphysics, not to physics. In physical philosophy, though he caught hold of some of the discoveries which were then coming into view, the method in which he reasoned or professed to reason was altogether vicious; and was, as I have already said, an attempt to undo what the reformers, both theoretical and practical, had been doing:—to discredit the philosophy of experience, and to restore the reign of à priori systems.

It was, however, now, too late to make any such attempt; and nothing came of it to interrupt the progress of a better philosophy of discovery.


CHAPTER XVIII.
Newton.

1. BOLD and extensive as had been the anticipations of those whose minds were excited by the promise of the new philosophy, the discoveries of Newton respecting the mechanics of the universe, brought into view truths more general and profound than those earlier philosophers had hoped or imagined. With these vast accessions to human knowledge, men's thoughts were again set in action; and philosophers made earnest and various attempts to draw, from these extraordinary advances in science, the true moral with regard to the conduct and limits of the human understanding. They not only endeavoured to verify and illustrate, by these new portions of science, what had recently been taught concerning the methods of obtaining sound knowledge; but they were also led to speculate concerning many new and more interesting questions relating to this subject. They saw, for the first time, or at least far more clearly than before, the distinction between the inquiry into the laws, and into the causes of phenomena. They were tempted to ask, how far the discovery of causes could be carried; and whether it would soon reach, or clearly point to, the ultimate cause. They were driven to consider whether the properties which they discovered were essential properties of all matter, necessarily and primarily involved in its essence, though revealed to us at a late period by their derivative effects. These questions even now agitate the thoughts of speculative men. Some of them have already, in this work, been discussed, or arranged in the places which our view of the philosophy of these subjects assigns to them. But we must here notice them as they occurred to Newton himself and his immediate followers.

2. The general Baconian notion of the method of philosophizing,—that it consists in ascending from phenomena, through various stages of generalization, to truths of the highest order,—received, in Newton's discovery of the universal mutual gravitation of every particle of matter, that pointed actual exemplification, for want of which it had hitherto been almost overlooked, or at least very vaguely understood. That great truth, and the steps by which it was established, afford, even now, by far the best example of the successive ascent, from one scientific truth to another,—of the repeated transition from less to more general propositions,—which we can yet produce; as may be seen in the Table which exhibits the relation of these steps in Book II. of the Novum Organon Renovatum. Newton himself did not fail to recognize this feature in the truths which he exhibited. Thus he says[217], "By the way of Analysis we proceed from compounds to ingredients, as from motions to the forces producing them; and in general, from effects to their causes, and from particular causes to more general ones, till the argument ends in the most general." And in like manner in another Query[218]: "The main business of natural philosophy is to argue from phenomena without feigning hypotheses, and to deduce causes from effects, till we come to the First Cause, which is certainly not mechanical."

3. Newton appears to have had a horror of the term hypothesis, which probably arose from his acquaintance with the rash and illicit general assumptions of Descartes. Thus in the passage just quoted, after declaring that gravity must have some other cause than matter, he says, "Later philosophers banish the consideration of such a cause out of Natural Philosophy, feigning hypotheses for explaining all things mechanically, and referring other causes to metaphysics." In the celebrated Scholium at the end of the Principia he says, "Whatever is not deduced from the phenomena, is to be termed hypothesis; and hypotheses, whether metaphysical or physical, or occult causes, or mechanical, have no place in experimental philosophy. In this philosophy, propositions are deduced from phenomena, and rendered general by induction." And in another place, he arrests the course of his own suggestions, saying, "Verum hypotheses non fingo." I have already attempted to show that this is, in reality, a superstitious and self-destructive spirit of speculation. Some hypotheses are necessary, in order to connect the facts which are observed; some new principle of unity must be applied to the phenomena, before induction can be attempted. What is requisite is, that the hypothesis should be close to the facts, and not connected with them by the intermediation of other arbitrary and untried facts; and that the philosopher should be ready to resign it as soon as the facts refuse to confirm it. We have seen in the History[219], that it was by such a use of hypotheses, that both Newton himself, and Kepler, on whose discoveries those of Newton were based, made their discoveries. The suppositions of a force tending to the sun and varying inversely as the square of the distance; of a mutual force between all the bodies of the solar system; of the force of each body arising from the attraction of all its parts; not to mention others, also propounded by Newton,—were all hypotheses before they were verified as theories. It is related that when Newton was asked how it was that he saw into the laws of nature so much further than other men, he replied, that if it were so, it resulted from his keeping his thoughts steadily occupied upon the subject which was to be thus penetrated. But what is this occupation of the thoughts, if it be not the process of keeping the phenomena clearly in view, and trying, one after another, all the plausible hypotheses which seem likely to connect them, till at last the true law is discovered? Hypotheses so used are a necessary element of discovery.

4. With regard to the details of the process of discovery, Newton has given us some of his views, which are well worthy of notice, on account of their coming from him; and which are real additions to the philosophy of this subject. He speaks repeatedly of the analysis and synthesis of observed facts; and thus marks certain steps in scientific research, very important, and not, I think, clearly pointed out by his predecessors. Thus he says[220], "As in Mathematics, so in Natural Philosophy, the investigation of difficult things by the method of analysis ought ever to precede the method of composition. This analysis consists in making experiments and observations, and in drawing general conclusions from them by induction, and admitting of no objections against the conclusions, but such as are taken from experiments or other certain truths. And although the arguing from experiments and observations by induction be no demonstration of general conclusions; yet it is the best way of arguing which the nature of things admits of, and may be looked upon as so much the stronger, by how much the induction is more general." And he then observes, as we have quoted above, that by this way of analysis we proceed from compounds to ingredients, from motions to forces, from effects to causes, and from less to more general causes. The analysis here spoken of includes the steps which in our Novum Organon we call the decomposition of facts, the exact observation and measurement of the phenomena, and the colligation of facts; the necessary intermediate step, the selection and explication of the appropriate conception, being passed over by Newton, in the fear of seeming to encourage the fabrication of hypotheses. The synthesis of which Newton here speaks consists of those steps of deductive reasoning, proceeding from the conception once assumed, which are requisite for the comparison of its consequences with the observed facts. This, his statement of the process of research, is, as far as it goes, perfectly exact.

5. In speaking of Newton's precepts on the subject, we are naturally led to the celebrated "Rules of Philosophizing," inserted in the second edition of the Principia. These rules have generally been quoted and commented on with an almost unquestioning reverence. Such Rules, coming from such an authority, cannot fail to be highly interesting to us; but at the same time, we cannot here evade the necessity of scrutinizing their truth and value, according to the principles which our survey of this subject has brought into view. The Rules stand at the beginning of that part of the Principia (the Third Book) in which he infers the mutual gravitation of the sun, moon, planets, and all parts of each. They are as follows: