8. Perhaps some persons may be disposed to say, that Newton's Rule does not enjoin us to take those causes only which we clearly know, or suppose we know, to be really existing and operating, but only causes of such kinds as we have already satisfied ourselves do exist in nature. It may be urged that we are entitled to infer that the planets are governed in their motions by an attractive force, because we find, in the bodies immediately subject to observation and experiment, that such motions are produced by attractive forces, for example, by that of the earth. It may be said that we might on similar grounds infer forces which unite particles of chemical compounds, or deflect particles of light, because we see adhesion and deflection produced by forces.

But it is easy to show that the Rule, thus laxly understood, loses all significance. It prohibits no hypothesis; for all hypotheses suppose causes such as, in some case or other, we have seen in action. No one would think of explaining phenomena by referring them to forces and agencies altogether different from any which are known; for on this supposition, how could he pretend to reason about the effects of the assumed causes, or undertake to prove that they would explain the facts? Some close similarity with some known kind of cause is requisite, in order that the hypothesis may have the appearance of an explanation. No forces, or virtues, or sympathies, or fluids, or ethers, would be excluded by this interpretation of veræ causæ. Least of all, would such an interpretation reject the Cartesian hypothesis of vortices; which undoubtedly, as I conceive, Newton intended to condemn by his Rule. For that such a case as a whirling fluid, carrying bodies round a centre in orbits, does occur, is too obvious to require proof. Every eddying stream, or blast that twirls the dust in the road, exhibits examples of such action, and would justify the assumption of the vortices which carry the planets in their courses; as indeed, without doubt, such facts suggested the Cartesian explanation of the solar system. The vortices, in this mode of considering the subject, are at the least as real a cause of motion as gravity itself.

9. Thus the Rule which enjoins "true causes," is nugatory, if we take veræ causæ in the extended sense of any causes of a real kind, and unphilosophical, if we understand the term of those very causes which we familiarly suppose to exist. But it may be said that we are to designate as "true causes," not those which are collected in a loose, confused and precarious manner, by undisciplined minds, from obvious phenomena, but those which are justly and rigorously inferred. Such a cause, it may be added, gravity is; for the facts of the downward pressures and downward motions of bodies at the earth's surface lead us, by the plainest and strictest induction, to the assertion of such a force. Now to this interpretation of the Rule there is no objection; but then, it must be observed, that on this view, terrestrial gravity is inferred by the same process as celestial gravitation; and the cause is no more entitled to be called "true," because it is obtained from the former, than because it is obtained from the latter class of facts. We thus obtain an intelligible and tenable explanation of a vera causa; but then, by this explanation, its verity ceases to be distinguishable from its other condition, that it "suffices for the explanation of the phenomena." The assumption of universal gravitation accounts for the fall of a stone; it also accounts for the revolutions of the Moon or of Saturn; but since both these explanations are of the same kind, we cannot with justice make the one a criterion or condition of the admissibility of the other.

10. But still, the Rule, so understood, is so far from being unmeaning or frivolous, that it expresses one of the most important tests which can be given of a sound physical theory. It is true, the explanation of one set of facts may be of the same nature as the explanation of the other class: but then, that the cause explains both classes, gives it a very different claim upon our attention and assent from that which it would have if it explained one class only. The very circumstance that the two explanations coincide, is a most weighty presumption in their favour. It is the testimony of two witnesses in behalf of the hypothesis; and in proportion as these two witnesses are separate and independent, the conviction produced by their agreement is more and more complete. When the explanation of two kinds of phenomena, distinct, and not apparently connected, leads us to the same cause, such a coincidence does give a reality to the cause, which it has not while it merely accounts for those appearances which suggested the supposition. This coincidence of propositions inferred from separate classes of facts, is exactly what we noticed in the Novum Organon Renovatum (b. ii. c. 5, sect. 3), as one of the most decisive characteristics of a true theory, under the name of Consilience of Inductions.

That Newton's First Rule of Philosophizing, so understood, authorizes the inferences which he himself made, is really the ground on which they are so firmly believed by philosophers. Thus when the doctrine of a gravity varying inversely as the square of the distance from the body, accounted at the same time for the relations of times and distances in the planetary orbits and for the amount of the moon's deflection from the tangent of her orbit, such a doctrine became most convincing: or again, when the doctrine of the universal gravitation of all parts of matter, which explained so admirably the inequalities of the moon's motions, also gave a satisfactory account of a phenomenon utterly different, the precession of the equinoxes. And of the same kind is the evidence in favour of the undulatory theory of light, when the assumption of the length of an undulation, to which we are led by the colours of thin plates, is found to be identical with that length which explains the phenomena of diffraction; or when the hypothesis of transverse vibrations, suggested by the facts of polarization, explains also the laws of double refraction. When such a convergence of two trains of induction points to the same spot, we can no longer suspect that we are wrong. Such an accumulation of proof really persuades us that we have to do with a vera causa. And if this kind of proof be multiplied;—if we again find other facts of a sort uncontemplated in framing our hypothesis, but yet clearly accounted for when we have adopted the supposition;—we are still further confirmed in our belief; and by such accumulation of proof we may be so far satisfied, as to believe without conceiving it possible to doubt. In this case, when the validity of the opinion adopted by us has been repeatedly confirmed by its sufficiency in unforeseen cases, so that all doubt is removed and forgotten, the theoretical cause takes its place among the realities of the world, and becomes a true cause.

11. Newton's Rule then, to avoid mistakes, might be thus expressed: That "we may, provisorily, assume such hypothetical cause as will account for any given class of natural phenomena; but that when two different classes of facts lead us to the same hypothesis, we may hold it to be a true cause." And this Rule will rarely or never mislead us. There are no instances, in which a doctrine recommended in this manner has afterwards been discovered to be false. There have been hypotheses which have explained many phenomena, and kept their ground long, and have afterwards been rejected. But these have been hypotheses which explained only one class of phenomena; and their fall took place when another kind of facts was examined and brought into conflict with the former. Thus the system of eccentrics and epicycles accounted for all the observed motions of the planets, and was the means of expressing and transmitting all astronomical knowledge for two thousand years. But then, how was it overthrown? By considering the distances as well as motions of the heavenly bodies. Here was a second class of facts; and when the system was adjusted so as to agree with the one class, it was at variance with the other. These cycles and epicycles could not be true, because they could not be made a just representation of the facts. But if the measures of distance as well as of position had conspired in pointing out the cycles and epicycles, as the paths of the planets, the paths so determined could not have been otherwise than their real paths; and the epicyclical theory would have been, at least geometrically, true.

12. Of the Second Rule.—Newton's Second Rule directs that "natural events of the same kind are to be referred to the same causes, so far as can be done." Such a precept at first appears to help us but little; for all systems, however little solid, profess to conform to such a rule. When any theorist undertakes to explain a class of facts, he assigns causes which, according to him, will by their natural action, as seen in other cases, produce the effects in question. The events which he accounts for by his hypothetical cause, are, he holds, of the same kind as those which such a cause is known to produce. Kepler, in ascribing the planetary motions to magnetism, Descartes, in explaining them by means of vortices, held that they were referring celestial motions to the causes which give rise to terrestrial motions of the same kind. The question is, Are the effects of the same kind? This once settled, there will be no question about the propriety of assigning them to the same cause. But the difficulty is, to determine when events are of the same kind. Are the motions of the planets of the same kind with the motion of a body moving freely in a curvilinear path, or do they not rather resemble the motion of a floating body swept round by a whirling current? The Newtonian and the Cartesian answered this question differently. How then can we apply this Rule with any advantage?

13. To this we reply, that there is no way of escaping this uncertainty and ambiguity, but by obtaining a clear possession of the ideas which our hypothesis involves, and by reasoning rigorously from them. Newton asserts that the planets move in free paths, acted on by certain forces. The most exact calculation gives the closest agreement of the results of this hypothesis with the facts. Descartes asserts that the planets are carried round by a fluid. The more rigorously the conceptions of force and the laws of motion are applied to this hypothesis, the more signal is its failure in reconciling the facts to one another. Without such calculation, we can come to no decision between the two hypotheses. If the Newtonian hold that the motions of the planets are evidently of the same kind as those of a body describing a curve in free space, and therefore, like that, to be explained by a force acting upon the body; the Cartesian denies that the planets do move in free space. They are, he maintains, immersed in a plenum. It is only when it appears that comets pass through this plenum in all directions with no impediment, and that no possible form and motion of its whirlpools can explain the forces and motions which are observed in the solar system, that he is compelled to allow the Newtonian's classification of events of the same kind.

Thus it does not appear that this Rule of Newton can be interpreted in any distinct and positive manner, otherwise than as enjoining that, in the task of induction, we employ clear ideas, rigorous reasoning, and close and fair comparison of the results of the hypothesis with the facts. These are, no doubt, important and fundamental conditions of a just induction; but in this injunction we find no peculiar or technical criterion by which we may satisfy ourselves that we are right, or detect our errors. Still, of such general prudential rules, none can be more wise than one which thus, in the task of connecting facts by means of ideas, recommends that the ideas be clear, the facts, correct, and the chain of reasoning which connects them, without a flaw.

14. Of the Third Rule.—The Third Rule, that "qualities which are observed without exception be held to be universal," as I have already said, seems to be intended to authorize the assertion of gravitation as a universal attribute of matter. We formerly stated, in treating of Mechanical Ideas[221], that this application of such a Rule appears to be a mode of reasoning far from conclusive. The assertion of the universality of any property of bodies must be grounded upon the reason of the case, and not upon any arbitrary maxim. Is it intended by this Rule to prohibit any further examination how far gravity is an original property of matter, and how far it may be resolved into the result of other agencies? We know perfectly well that this was not Newton's intention; since the cause of gravity was a point which he proposed to himself as a subject of inquiry. It would certainly be very unphilosophical to pretend, by this Rule of Philosophizing, to prejudge the question of such hypotheses as that of Mosotti, That gravity is the excess of the electrical attraction over electrical repulsion, and yet to adopt this hypothesis, would be to suppose electrical forces more truly universal than gravity; for according to the hypothesis, gravity, being the inequality of the attraction and repulsion, is only an accidental and partial relation of these forces. Nor would it be allowable to urge this Rule as a reason of assuming that double stars are attracted to each other by a force varying according to the inverse square of the distance; without examining, as Herschel and others have done, the orbits which they really describe. But if the Rule is not available in such cases, what is its real value and authority? and in what cases are they exemplified?