Fig. 11. Are two polite Plains inclined to one another, to shew that the Descent down one Plain will elevate a Ball almost to an equal Height on the other.
MECHANICKS. 2
An Explication of the Second Plate.
Figure 1. Is the deceitful Balance; which yet is in Æquilibrio because the Weights 23 and 24 are reciprocally proportional to their Distances from the Center of Motion. Now this Cheat is easily discover'd by changing the Position of the Weights, and putting each of them into the other Scale, which will then be very unequal, or nearly as 11 to 12.
Fig. 2. Is that sort of Balance which is called a Stiliard, and of frequent Use among us. It is only a Common Balance, with Weights at Distances from the Center of Motion reciprocally Proportionable to themselves: Only here the Length of Part of the Beam is compensated by a large Ball or Weight B, fixed to the shorter Beam; and one Weight as w removed along equal Divisions is made use of to weigh several others, as 6 w. &c.
Fig. 3. Is design'd to shew how any Force is diminish'd by its Obliquity; and that a Weight hung obliquely at 3, 2, 1, in the Circumference of a Circle or Wheel, is of no more Efficacy, as to the turning of the Wheel round, than if it were hung perpendicularly at the corresponding Points 3, 2, 1, in the Semidiameter of the same Circle.
Fig. 4. Is the Demonstration of the former Case, by shewing that in those Circumstances the Force P B is resolved into two B F and B G, of which B F pulls directly from the Center, and is of no Use to the turning the Wheel round: And so all the remaining Force is represented by the perpendicular Force B G, which is wholly spent in turning it round. So that as B P is to B G, so is the whole oblique Force, to the real or direct Force: Or so, in the similar Triangle B E C, is B C the whole oblique Radius, to C E the Perpendicular: Or so in the foregoing Figure is O 1, O 2, O 3, the common Hypotenuse or entire Radius, to O 1, O 2, O 3, the Bases or shorter Radij, where the String cuts the entire Radius perpendicularly.
Fig. 5. Is the first Sort of Lever, where C the Prop is between the Resistance to be overcome, or Weight to be moved 5 w, and w 1 the Power or Weight to move the other by: And is so like the Case of the Balance or Stiliard, that it needs no particular Explication. A Crow of Iron is of this Sort.
Fig. 6. Is the second Sort of Lever, where the Resistance to be overcome, or Weight to be moved w 3, is between the Prop C and the Point A, to which by the means of the Pulley P, the Power or Weight to move the other by, is applied. Bakers Knives for cutting Bread are commonly of this Sort.