He started a large factory at Newark, New Jersey, employing some three hundred men. Sometimes he was working on as many as forty-five improvements and original inventions at once. In 1876 he stopped manufacturing and turned all his attention to inventing. In that year he established a laboratory at Menlo Park, New Jersey, twenty-five miles from New York City. When this laboratory was outgrown, he founded a new one at Orange, New Jersey, the largest laboratory ever established by one man for scientific research and invention. It comprises one building 250 feet long and three stories high, and four smaller buildings, each one hundred feet long and one story high. The principal building contains a library of thirty thousand reference books, a lecture room, and an exhibition room, where a remarkable collection of instruments of almost every kind is to be seen.
When Edison began working to produce an incandescent electric light for illuminating residences and small rooms, most of the scientists of England said that such a light could not be produced. For nine years he worked on this invention. The chief problem was to find, for the horseshoe thread or filament used to give off the light, a material that should glow with sufficient intensity and yet not be consumed by the great heat necessary to produce the light. In his search for this material he tried all kinds of rags and textiles steeped in various chemicals, different kinds of paper, wood, inner and outer bark, cornstalks, etc. Finally he sent one of his assistants to the East, and in Japan a kind of bamboo was found answering the requirements. Perseverance won, and the incandescent electric light became a reality about 1880.
An Incandescent Light
Thomas Edison is one of the most systematic of workers, and nearly all his inventions have been the result of intelligent and methodical labor directed toward a definite aim. He reads carefully what other investigators have found out, so as not to waste time in going over fruitless ground. He also keeps copious note books of his own operations, so that there may be no loss of time and energy. His invention of the phonograph, however, was accidental. While he was working to improve the telephone, the idea of the phonograph suddenly came into his mind. A little while afterward the first phonograph, crude but successful, was finished. At first this instrument was regarded as a toy, but later the invention was sold for a million dollars.
Edison is a man of remarkable personality. Once when someone referred to him as a genius and said that he supposed a genius worked only when the spirit moved him, the inventor replied, "Genius is two per cent inspiration and ninety-eight per cent perspiration." He certainly possesses great native talent for inventing. This was apparent in his early boyhood. But much of his marvelous success is due to the intelligent direction of effort, to tireless perseverance, and to long hours of work. In 1897 he devoted his attention exclusively to the invention of a new storage battery, upon which he had been working for five years. For more than a year he worked harder than a day laborer. He was in his laboratory by half past seven in the morning; his luncheon was sent to him there; he went home to dinner, but he returned by eight o'clock. At half past eleven his carriage called for him, but often the coachman was compelled to wait three or four hours before the inventor was willing to suspend his work. While the first incandescent electric lighting plant was being prepared in New York City, Edison himself worked part of the time in the trenches, to be sure that the work would be properly done.
There is scarcely an electrical apparatus or an electrical process in existence to-day that does not bear the mark of some great change for the better coming from this most ingenious of American inventors. He has taken out more than four hundred patents on original inventions and improvements. Mr. Edison is still living in his beautiful home at West Orange, New Jersey, near his laboratory. He is frequently called the "Wizard of Menlo Park."
The idea of using electricity as motive power on railroads is nearly as old as the railroads themselves. In 1837, when the utility of steam for purposes of transportation was doubted, Robert Davidson propelled a car with an electric engine on the Edinburgh and Glasgow road. In the fifties Thomas Davenport, a Vermont blacksmith, constructed an electric engine containing all the essential elements of the modern electric motor. Little progress, however, was made in the use of electricity for motive power, because the cost of producing the electric current was so great. In 1887 Lieut. Sprague, overcoming most of the difficulties then existing, installed at Richmond, Virginia, the first successful electric railway in the world. Managers of street railways in other cities visited Richmond, and after an inspection of what Sprague had done there, decided to substitute electricity for animal power. No other construction has had a more rapid growth since the time of its invention than the electric railway. In 1890 there were only thirteen unimportant electric roads. Now there is hardly a city of the civilized world where the hum of the electric street car is not heard at all hours of day and night. Modern urban life could scarcely exist without it. It is rapidly pushing its way into the country and giving the farmer the privilege of rapid and cheap transit.
The uses of electricity are by no means exhausted in the four major inventions of the telegraph, the telephone, the electric light, and the electric street car. It has been put to many minor uses. Among the most interesting and important of these are the Roentgen or X-rays, discovered by Wilhelm Konrad von Roentgen, a German physicist, in 1895. They were named X-rays by their discoverer, because the ultimate nature of their radiation was unknown, the letter X being commonly used in algebra to represent an unknown quantity. The X-rays are peculiar electric rays having the power to penetrate wood, flesh, and other opaque substances. They are of much value to surgery in disclosing the location of bullets, foreign substances of various kinds, and other objective points in the interior of the human body.
The United States government has demonstrated through its Department of Agriculture that electricity applied to the soil will quicken and help the growth of certain vegetables. It has also shown that certain crops are forwarded by the application of electric light.