4. How far does a body fall (a) in 5 seconds (b) in 6 seconds (c) during the sixth second?

5. (a) What is the difference between the average velocity during the sixth second and the velocity at the beginning of that second?

(b) Is this difference equal to that found in the second problem? Why?

6. A stone dropped from a cliff strikes the foot of it in 5 seconds. What is the height of the cliff?

7. Why is it that the increased weight of a body when taken to higher latitudes causes it to fall faster, while at the same place a heavy body falls no faster than a light one?

8. When a train is leaving a station its acceleration gradually decreases to zero, although the engine continues to pull. Explain.

9. Would you expect the motion of equally smooth and perfect spheres of different weight and material to be equally accelerated on the same inclined plane? Give reason for your answer. Try the experiment.

10. A body is thrown upward with the velocity of 64.32 ft. per sec. How many seconds will it rise? How far will it rise? How many seconds will it stay in the air before striking the ground?

11. 32.16 feet = how many centimeters?

12. The acceleration of a freely falling body is constant at any one place. What does this show about the pull which the earth exerts on the body?