251. The Daniell Cell.—This cell is often used in laboratories, and on closed circuits such as those connected with fire and burglar alarms and telegraph lines. It has two plates of zinc and copper placed in two different liquids which are kept separated by a porous clay cup (Fig. 224). The zinc rod is kept in a solution of zinc sulphate contained in the porous cup. The copper plate is in a solution of copper sulphate filling the rest of the glass jar. Unlike the Leclanché cell, this one must be kept upon a closed circuit to do its best work, as the two liquids mix when the circuit is open. Taking its qualities in order, (a) its E.M.F. is about one volt, (b) it has no polarization since copper instead of hydrogen is deposited upon the copper plate. Therefore a uniform E.M.F. may be obtained from it, making it especially useful in laboratory experiments and tests. (c) Its resistance is considerable and (d) it is more expensive to operate than the Leclanché. It is sometimes used upon closed circuits outside of laboratories as in burglar and fire alarms, although in recent years, the storage battery is taking its place for these purposes.
252. The Gravity Cell.—Fig. 225 is like the Daniell cell in most respects, except that in this cell, the zinc plate is held at the top of the jar in a solution of zinc sulphate while the copper plate is at the bottom, surrounded by a solution of copper sulphate. The solutions mix but slowly as the copper sulphate solution is denser and remains at the bottom. This cell like the Daniell must also be kept upon closed circuit. On account of its simplicity and economy it is often used to operate telegraph instruments. Its qualities are similar to those of the Daniell cell.
Fig. 225.—The gravity cell.
253. Symbol for Voltaic Cells.—In electrical diagrams, the symbol employed to represent a voltaic cell is a short thick line near to and parallel to a longer thin one. As in Fig. 226. If several cells are to be represented the conventional symbol of the combination is represented as in Fig. 227. A single cell and a group of cells are each frequently called a battery.
Fig. 226.—Diagram of a single cell.
Fig. 227.—Diagram of a group of cells.
254. Effects of Electric Currents.—Having studied some of the devices for producing an electric current, let us now consider some of the effects caused by it. These effects will be studied under three heads: (a) Magnetic, (b) Chemical, and (c) Heat effects. Devices or articles showing these effects known to most high school students are respectively: (a) the electromagnet (b) electro-plated silver ware and (c) electric heaters, such as electric flat irons, electric toasters, etc. The magnetic effect of an electric current was first detected by Oersted at the University of Copenhagen in 1819. It may be observed by holding a wire carrying a current from a voltaic cell above and parallel to the needle of a magnetoscope. The needle is at once deflected (Fig. 228). If the current is reversed in direction the magnetoscope needle is deflected in the reverse direction. This simple device is the most common means for detecting an electric current. It therefore constitutes a galvanoscope. (See Art. 239.)
Fig. 227.—Diagram of a group of cells.Fig. 228.—A galvanoscope.