263. Galvanometers.—In using electric currents it is often necessary or desirable to be able to know not only that a given current is weak or strong, but precisely what its strength is. We can determine the relative strengths of two currents by the use of a galvanometer.

Fig. 243.—The magnet is at the center of the coil.
Fig. 244.—A moving-magnet (tangent) galvanometer.

The older or moving-magnet type of galvanometer is similar to the galvanoscope mentioned in Art. 239. It consists of a magnetic needle mounted at the center of a coil of wire. The coil is placed facing east and west, so that the needle will be held by the earth's magnetic field parallel to the plane of the coil. When a current is sent through the coil a magnetic field is produced within it. This deflects the needle, its north end turning east or west depending upon the direction of the current. (See Fig. 243.) The coils of a moving-magnet or tangent galvanometer (see Fig. 244) are large and firmly fastened to the base, while the magnet is small.

The moving-coil type of galvanometer (see Fig. 245) consists of a large magnet fastened to the frame of the device. The magnet usually has a horseshoe form to produce as strong a field as possible. The coil is wound on a light rectangular frame and is suspended between the two poles of the magnet. To concentrate the magnetic field, a cylinder of soft iron is usually placed within the coil. Fig. 246 represents a common form of moving-coil galvanometer.

Fig. 245.—To illustrate the principle of the moving-coil galvanometer.
Fig. 246.—A moving-coil (D'Arsonval) galvanometer.

264. Measurement of Electric Currents.—A galvanometer enables one to compare electric currents. To measure electric currents it is necessary to employ a unit of electrical quantity, just as in measuring the quantity of water delivered by a pipe, a unit of liquid measure is employed; thus, e.g., the current delivered by a given pipe may be 2 gallons of water per second, so in measuring the flow of an electric current one may speak of two coulombs per second. The coulomb is the unit quantity of electricity just as the unit of quantity of water is the gallon.

For most practical purposes, however, we are more interested in the rate or intensity of flow of current than in the actual quantity delivered. The unit of rate of flow or current is called the ampere.

In determining the exact quantity of an electric current, physicists make use of a device called a coulomb meter. (See Fig. 247.) This contains a solution of silver nitrate in which are placed two silver plates. The current to be measured is sent through the solution, in at one plate and out at the other. The plate where the current goes in, the anode, A (Fig. 247), loses in weight since some of the silver is dissolved. The plate where the current goes out, the cathode, C, increases in weight since some of the silver is deposited. By an international agreement, the intensity of the current which deposits silver at the rate of 0.001118 g. per second is 1 ampere. This is equal to 4.025 g. per hour.