(1) Sound and Wave Motion

317. What is a Sound?—This question has two answers, which may be illustrated as follows: Suppose that an alarm clock is set so that it will strike in one week and that it is placed upon a barren rock in the Pacific Ocean by sailors who immediately sail away. If when the tapper strikes the bell at the end of the week no ear is within a hundred miles, is any sound produced? The two view-points are now made evident, for some will answer "no" others "yes." Those answering "no" hold that sound is a sensation which would not be produced if no ear were at hand to be affected. Those answering "yes" understand, by the term sound, a mode of motion capable of affecting the auditory nerves, and that sound exists wherever such motions are present. This latter point of view is called the physical and is the one we are to use in this study.

Fig. 314.—The tuning fork is vibrating.

318. Source of Sound.—If we trace any sound to its source, it will be found to originate in a body in rapid motion usually in what is called a state of vibration. To illustrate, take a tuning fork, strike it to set it in vibration and place its stem firmly against a thin piece of wood; the sound will be strengthened materially by the vibration of the wood. If now the vibrating fork is placed with the tips of the prongs in water, the vibration is plainly shown by the spattering of the water (Fig. 314). When one speaks, the vibrating body is in the larynx at the top of the windpipe. Its vibration may be plainly felt by the hand placed upon the throat while speaking.

319. Sound Media.—Usually sounds reach the ear through the air. The air is then said to be a medium for sound. Other substances may serve as a sound medium, for if the head is under water and two stones, also under water, are struck together a sharp sound is heard. Also if one end of a wooden rod is held at the ear and the other end of the rod is scratched by a pin, the sound is more plainly perceived through the wood than through the air. Think of some illustration from your own experience of a solid acting as medium for sound. If an electric bell is placed in a bell jar attached to an air pump, as in Fig. 315, on exhausting the air the loudness of the sound is found to diminish, indicating that in a perfect vacuum no sound would be transmitted. This effect of a vacuum upon the transmission of sound is very different from its effect upon radiation of heat and light. Both heat and light are known to pass through a vacuum since both come to the earth from the sun through space that so far as we know contains no air or other matter. Sound differs from this in that it is always transmitted by some material body and cannot exist in a vacuum.

Fig. 315.—Sound does not travel in a vacuum.

320. Speed of Sound.—Everyone has noticed that it takes time for sound to travel from one place to another. If we see a gun fired at a distance, the report is heard a few seconds after the smoke or flash is seen. The time elapsing between a flash of lightning and the thunder shows that sound takes time to move from one place to another. Careful experiments to determine the speed of sound have been made. One method measures accurately the time required for the sound of a gun to pass between two stations several miles apart. A gun or cannon is placed at each station. These are fired alternately, first the one at one station and then the one at the other so as to avoid an error in computation due to the motion of wind. This mode of determining the speed of sound is not accurate. Other methods, more refined than the one just described have given accurate values for the speed of sound. The results of a number of experiments show that, at the freezing temperature, 0°C., the speed of sound in air is 332 meters or 1090 ft. a second. The speed of sound in air is affected by the temperature, increasing 2 ft. or 0.6 meter per second for each degree that the temperature rises above 0°C. The speed decreases the same amount for each degree C. that the air is cooled below the freezing point. The speed of sound in various substances has been carefully determined. It is greater in most of them than in air. In water the speed is about 1400 meters a second; in wood, while its speed varies with different kinds, it averages about 4000 meters a second; in brass the speed is about 3500 meters; while in iron it is about 5100 meters a second.

321. The Nature of Sound.—We have observed that sound originates at a vibrating body, that it requires a medium in order to be transmitted from one place to another, and that it travels at a definite speed in a given substance. Nothing has been said, however, of the mode of transmission, or of the nature of sound. Sounds continue to come from an alarm clock even though it is placed under a bell jar. It is certain that nothing material can pass through the glass of the jar. If, however, we consider that sound is transmitted by waves through substances the whole matter can be given a simple explanation. In order to better understand the nature of sound a study of waves and wave motion will be taken up in the next section.