The note called middle C is considered by physicists as having 256 vibrations a second. This would give the following actual vibration numbers to the remaining notes of the major scale that begins with "Middle C" D.-288, E.-320, F.-341.3, G.-384, A.-426.6, B.-480, C'.-512. Musicians, however, usually make use of a scale of slightly higher pitch. The international standard of pitch in this country and in Europe is that in which "A" has 435 vibrations per second. This corresponds to 261 vibrations for middle C.

333. The Relation between Speed, Wave Length, and Number of Vibrations per Second.—Since the notes from the various musical instruments of an orchestra are noticed to harmonize as well at a distance as at the place produced, it is evident that notes of all pitches travel at the same rate, or have the same speed. Notes of high pitch, having a high vibration rate produce more waves in a second than notes of low pitch, consequently the former are shorter than the latter. The following formula gives the relation between the speed (v), wave length (l), and number of vibrations per sec. (n):

v = l × n, or l = v/n

that is, the speed of a sound wave is equal to the number of vibrations per second times the wave length, or the wave length is equal to the speed divided by the number of vibrations per second. This formula may also be employed to find the number of vibrations when the wave length and speed are given.

Important Topics

1. Difference between noise and music.

2. Factors affecting intensity: area, amplitude, density, distance.

3. Pitch, major scale, relative vibration numbers.

4. Relation between speed, wave length and vibration rate.