Fig. 338.—Chladni's figures.
346. Chladni's Plate.—The fact that vibrating bodies are capable of many modes of vibration is well illustrated by what is known as Chladni's plate. This consists of a circular or square sheet of brass attached to a stand at its center so as to be held horizontally. (See Fig. 337.) Fine sand is sprinkled over its surface and the disc is set vibrating by drawing a violin bow across its edge. The mode of vibration of the disc is indicated by the sand accumulating along the lines of least vibration, called nodal lines. A variety of nodal lines each accompanied by its characteristic tone may be obtained by changing the position of the bow and by touching the fingers at different points at the edge of the disc. They are known as Chladni's figures. (See Fig. 338.)
Fig. 339.—Manometric flame apparatus.
347. Manometric Flames.—The actual presence of overtones along with the fundamental may be made visible by the manometric flame apparatus. This consists of a wooden box, C, mounted upon a stand. (See Fig. 339.) The box is divided vertically by a flexible partition or diaphragm. Two outlets are provided on one side of the partition, one, C, leads to a gas pipe, the other is a glass tube, D. On the other side of the partition a tube, E, leads to a mouthpiece. A mirror, M, is mounted so as to be rotated upon a vertical axis in front of F and near it. Gas is now turned on and lighted at F. The sound of the voice produced at the mouthpiece sends sound waves through the tube and against the diaphragm which vibrates back and forth as the sound waves strike it. This action affects the flame which rises and falls. If now the mirror is rotated, the image of the flame seen in the mirror rises and falls, showing not only the fundamental or principal vibrations but also the overtones. If the different vowel sounds are uttered in succession in the mouthpiece, each is found to be accompanied by its characteristic wave form (Fig. 340). In some, the fundamental is strongly prominent, while in others, the overtones produce marked modifications. Other devices have been invented which make possible the accurate analysis of sounds into their component vibrations, while still others unite simple tones to produce any complex tone desired.
348. The Phonograph.—The graphophone or phonograph provides a mechanism for cutting upon a disc or cylinder a groove that reproduces, in the varying form or depth of the tracing, every peculiarity of the sound waves affecting it. The reproducer consists of a sensitive diaphragm to which is attached a needle. The disc or cylinder is rotated under the reproducing needle. The irregularities of the bottom of the tracing cause corresponding movements of the needle and the attached diaphragm, which start waves that reproduce the sounds that previously affected the recorder. The construction of the phonograph has reached such perfection that very accurate reproduction of a great variety of sounds is secured.
Fig. 340.—Characteristic forms of manometric flames.
349. Wind Instruments.—In many musical instruments as the cornet, pipe-organ, flute, etc., and also in whistles, the vibrating body that serves as a source of sound is a column of air, usually enclosed in a tube. Unlike vibrating strings, this vibrating source of sound changes but little in tension or density, hence changes in the pitch of air columns is secured by changing their length. The law being similar to that with strings, the vibration rates of air columns are inversely proportional to their lengths.