Fig. 408.—The bright line spectrum of iron and its coincidences with some of the dark lines of the solar spectrum.

(B) If light from, for example, an arc light is sent over a gas flame containing sodium vapor, a dark line appears in the spectrum—in the exact position in which the yellow sodium line appeared. It seems that the sodium vapor removes from white light the same wave lengths that it itself produces. This absorption is supposed to be due to sympathetic vibration; just as a tuning fork is set in vibration by the waves of another fork in unison with it, at the same time absorbing the wave energy, so in the gas flame the sodium particles absorb the wave motion of the same vibration rate as that emitted by them. The fact that the spectrum of sunlight contains a great many dark lines is believed to indicate that the sun is surrounded by clouds formed by the vaporization of the various substances in the sun itself. By comparing the dark lines of the solar spectrum with the bright-line spectra of various substances found in the earth, such an exact correspondence of the lines is found that the presence of the vapor of these substances about the sun is considered proved. (See Fig. 408 which shows the exact correspondence between the bright-line spectrum of iron vapor and the dark lines appearing in a portion of the sun's spectrum.) The spectra of the stars also contain certain dark lines. Thus the presence of the corresponding substances in distant stars is considered as determined.

408. Theory of Color Vision.—By combining light of the three colors red, green and blue-violet in proper proportions, it has been found possible to produce any color effect, even white. This leads to the conclusion that in the retina of the eye are three different kinds or sets of sensitive nerve endings, sensitive respectively to red, to green, and to blue light. This idea is given corroboration by some facts of color blindness. Thus some persons have no sensation of red, this color not being distinguished from green. Others are color blind to green or blue. It is supposed that in color blind persons one of the sets of nerve endings sensitive to one of these three colors is lacking.

409. Three-color Printing.—Since all colors may be produced by mixing the three colors, light red, green, and blue-violet, these are called the three primary colors. The so-called primary pigments or paints are simply the complements of the three primary colors. They are, in order, peacock blue, crimson, and light yellow. The three pigments when mixed yield black, since combined they absorb all kinds of visible light. The process of three-color printing, now so generally employed in printing colored pictures for books, calendars, etc., consists in combining upon white paper three colored impressions, using successively the three primary pigments (yellow, crimson and blue) from plates prepared as follows:

Three photographs of a given colored object are taken, each through a different sheet of gelatine called a filter, stained the color of one of the primary colors. From these photographs half-tone blocks are made in the usual way. The colored picture is made by carefully superposing impressions from these blocks, using in each case an ink whose color is the complement of the "filter" through which the original picture was taken. An illustration of the process is given upon the plate in the frontispiece of this book.

Important Topics

1. Color, due to wave length; dispersion by prism, sphere in rainbow, complementary colors, color of opaque and transparent bodies.

2. Spectra, solar; formation of rainbow; bright-line spectra, how formed, how used; dark-line, how formed, used.

3. Theory of color vision. Three color printing.

Exercises