Geissler tubes are tubes like the above. They are usually made of different kinds of glass twisted into various shapes to produce beautiful color effects. The aurora borealis or northern light is supposed to be electric discharges through rarefied air at the height of from 60 to 100 miles above the earth's magnetic poles. (See Fig. 418.)

Fig. 418.—Aurora Borealis.

419. Cathode Rays.—When the tube in Art. 420 is exhausted to a pressure of 0.001 mm., or a little less than one millionth of an atmosphere, the character of the discharge is entirely changed. The tube becomes filled with a yellowish green phosphorescent light. This is produced by what are called cathode rays striking the glass walls of the tube. These rays are called cathode rays because they come from the cathode of the tube. They are invisible and that they travel in straight lines is shown by the shadow obtained by using a tube with a screen (Fig. 419).

Fig. 419.—A cathode ray tube.

420. "X" Rays.—In 1895, Professor Röntgen of Wurtzburg, Germany, discovered that when the cathode rays strike the walls of the tube or any solid within it they excite a form of invisible radiation. This radiation is called Röntgen rays, or more commonly, "X" rays. Careful experiments show that they travel in straight lines, and that they can not be reflected or refracted as light waves are. They pass through glass and opaque objects such as flesh, cardboard, cloth, leather, etc., but not through metallic substances. The tube in Fig. 420 has a screen covered with crystals which become luminous when struck by the cathode rays. On bringing a magnet near the tube the luminous line is raised or lowered showing that the magnetic field affects the stream of cathode rays, attracting it when in one position but repelling it when in the reverse direction. The cathode rays which cause the bright line possess a negative charge of electricity. They are now believed to be electrons shot off from the surface of the cathode with speeds that may reach 100,000 miles a second. "X" rays possess no electrical charge whatever and cannot be deflected by a magnet. They produce the same effect on a photograph plate as light does, only more slowly. Hence, they can be used in taking "X" ray photographs. Certain crystals, like barium platinum cyanide, fluoresce when struck by the "X" rays. The fluoroscope is the name given to a light-tight box closed at one end by a cardboard covered with these crystals (Fig. 421). On looking into the fluoroscope with an opaque object such as the hand placed between the screen and the "X" ray tube, a shadow of the bones of the hand can be seen upon the screen of the fluoroscope. (See Fig. 422.)

Fig. 420.—The stream of cathode rays is deflected by a magnet.
Fig. 421.—A fluoroscope.
Fig. 422.—A view of the "shadow" of a hand as seen in a fluoroscope.

A special form of the tube is used. (See Fig. 423.) In this tube a platinum disc is placed at the focus of the concave cathode. This concentrates the "X" rays in one direction. It is now generally believed that "X" rays are waves in the ether set up by the sudden stoppage of the cathode rays at the platinum anode.