wt. in air / wt. of equal volume of water = wt. in air / ((wt. in air) - (wt. in water))
(c) Solids Lighter than Water.—This will require a sinker to hold the body under water. Weigh the solid in air (w). Weigh the sinker in water (s). Attach the sinker to the solid and weigh both in water (w´). The specific gravity equals
(wt. of solid in air)/(loss in wt. of solid in water) or w/((w + s) - w´)
The apparent loss of weight of the solid is equal to the sum of its weight in air plus the weight of the sinker in water, less the combined weight of both in water.
(d) The Density of a Liquid by a Hydrometer.—One may also easily find the density of any liquid by Archimedes' Principle. If one takes the rod described in Art. 46, and places it in water, the number of cubic centimeters of water it displaces indicates its weight in grams. On placing the rod in another liquid in which it floats, it will of course displace its own weight and the height to which the liquid rises on the scale gives the volume. By dividing the weight of the rod as shown by its position in water by the volume of the liquid displaced we obtain the density of the liquid. Commercial hydrometers for testing the density of milk, alcohol and other liquids are made of glass of the form shown in Fig. 28. The long narrow stem permits small differences in volume to be noticed, hence they are more accurate than the rod described in the preceding paragraph. For convenience this rod contains a paper scale, so that when the height of the liquid on the stem is noted, the density is read at once.
Fig. 28.—A hydrometer used to find the density of a liquid.
Density of Liquids by Loss of Weight. Weigh a piece of glass in air (Wa), in water (Ww), and in the liquid to be tested (Wl).
Then (Wa - Ww)gives the weight of the water displaced.
And (Wa - Wl) gives the weight of the liquid displaced.