7. If the barometer tube is inclined the mercury remains at the same horizontal level. How can this be explained?

8. When the mercurial barometer stands at 76 cm., how high would a water barometer stand? Explain.

9. Explain why it is possible for one to suck soda water through a tube?

10. Fill a tumbler with water. Place a sheet of paper over the top and invert. The paper clings to the tumbler and prevents the water from escaping. Explain. (See Fig. 35.)

11. Why must a kerosene oil can have two openings in order to allow the oil to flow freely?

12. Explain the action of the modern drinking fountain (Fig. 36).

(2) Compressibility and Expansibility of the air

57. Effect of Pressure on Liquids and Gases.—Both classes of fluids, liquids and gases, have many characteristics in common. Both are composed of molecules that move freely; hence both flow. At any point within a fluid the pressure is the same in all directions. Archimedes' Principle applies, therefore, to both liquids and gases.

We now come to an important difference between liquids and gases. Liquids are practically incompressible. "So much so, that if water is subjected to a pressure of 3000 kg. per sq. cm., its volume is reduced only about one-tenth." Gases show a very different behavior from liquids on being subjected to pressure. They may readily be compressed to a small fraction of their volume as is noticed on inflating a pneumatic tire. A gas has also the ability to spring back to a larger volume as soon as the pressure is released, as when a cork is driven from a pop gun. Not only is compressed air able to expand, but air under ordinary conditions will expand if it is released in a space where the pressure is less.

Hollow bodies, animals and plants, are not crushed by atmospheric pressure, because the air and gases contained within exert as much force outward as the air exerts inward.