II. Effect of Manganese on the Growth of Higher Plants.
1. Toxic effect.
(a) Toxic action of manganese compounds in the presence of soluble nutrients.
Little work seems to have been done on the action of manganese compounds in water cultures. [Knop (1884)] just indicated that manganese compounds had no effect on maize, but gave no details. Japanese investigators touched on the matter in the course of their extensive experiments with this element. [Asō (1902)] found that the greater concentrations of manganese sulphate exercised an injurious influence on barley. Even in solutions with as little as ·002% manganese sulphate (= 1/50,000 MnSO4) the roots gradually turned brown, the lower leaves following suit. The brown colour was concentrated at certain points of the leaves, and microscopical examination showed that the membranes of the epidermal cells, and in some cases the nuclei, were stained deeply brown. The greatest concentration endured by barley without injury seemed to be about ·01 per 1000 = 1/100,000. The presence of iron in the food solutions seems to counteract the effect of the manganese to some extent by delaying the yellowing of the leaves. Wheat proved very similar to barley in its reactions, though more iron is necessary to give good healthy growth. Asō states that wheat is able to overcome the injurious action of manganese much more readily than is barley. With peas the yellowing of the leaves was delayed, probably on account of a sufficient supply of iron in the reserve stores of the seeds.
[Loew and Sawa (1902)] found that ·25% = 1/400 MnSO4 (anhydrous) kills pea plants within five days and that the green colour is gradually affected with more dilute solutions. Barley and soy beans were grown in nutritive solutions with either iron sulphate or manganese sulphate or both (·01% FeSO4, ·02% MnSO4, ·01% FeSO4 + ·02% MnSO4). At first the growth was increased by the action of two salts together, but eventually the shoots turned yellowish, and assimilation was depressed, so that decreased nutrition led to relaxation in the speed of growth, indicating the toxic action due to the manganese sulphate.
The [Rothamsted experiments] supported Asō’s work on the action of manganese sulphate on barley, concentrations of the salt above 1/100,000 having a retarding influence on the growth, the roots being coloured brown and the leaves also showing discolouration. At an early stage in growth the lower leaves of the plants receiving the most poison began to be flecked with brown spots, which were at first attributed to an attack of rust. Suspicion was soon aroused, however, and a closer microscopic investigation showed that no disease was present, but that the cells in the affected spots were dead and brown, though they retained their shape. The dead cells at first occurred in small patches, which spread and coalesced until ultimately the whole leaf was involved. Some of the affected leaves were detached and fused with a mixture of sodium carbonate and potassium nitrate. On dissolving up the resulting mass with water a green colouration was obtained, indicating the presence of manganese in the leaves. This shows that the manganese is taken up by the roots, transferred to the leaves and then deposited in them, the lower leaves being the first affected.
The presence of manganese in the nutritive solution retarded the ripening of the grain to some extent, as when the grains from the control plants were hard and ripe, those from plants treated with 1/10,000 MnSO4 were green, those with 1/100,000 were a mixture of ripe, half-ripe, and green grains, while plants which had received 1/1,000,000 MnSO4 possessed ripe grains.
Peas give similar results to barley so far as the vegetative growth is concerned, the same retardation with the higher concentrations being observed, while the brown discoloured patches in the lower leaves are much in evidence. All traces of manganese in the leaves disappear when the concentration falls to 1/250,000. On the whole peas are more sensitive to manganese poisoning than is barley, and the higher strengths of manganese prove more deleterious to them.
(b) Toxic action of manganese compounds in sand cultures.
Little work has been done on this aspect of the problem. [Prince de Salm Horstmar (1851)] grew oats in sand with various combinations of nitrogenous substances and inorganic mineral salts. He stated that until the time of fruit formation manganese does not seem to be essential to the oat unless iron is in excess in the substratum.