Fig. 11

Now let us try another experiment in further illustration of this principle. We will take a tube about three inches long and one and one-half or two inches in diameter. This tube may be made of cardboard. Now cut out a piece of thin cardboard which will just fit over one end of the tube. This piece we will call the "diaphragm." Fasten the diaphragm by pasting it with two strips of thin paper to the tube. These strips of paper should be fastened only on the ends, and the middle of the paper allowed to be slack, as shown in the picture, so that the diaphragm may work backward and forward easily. Take a small shot about the size seen in the sketch and tie it to a single thread of fine silk, then let it hang as shown in the sketch (Fig. 11), so that it will only just touch the diaphragm. Now, if you speak into the open end of the tube the diaphragm will vibrate and the shot will be seen to move to and from it according to the strength of the vibrations. If we could by any means make a diaphragm in another tube reproduce these same vibrations, we should hear the same words respoken, if the tube were held to the ear.

Fig. 12

While the vibrations caused by the human voice are too minute to be seen, it may seem surprising that they can be made to produce power. This is done by an ingenious mechanism called a Phonomotor, perfected by the great inventor Thomas A. Edison, of whom every one has probably heard. This mechanism, when spoken or sung at (or into) immediately responds by causing a wheel to revolve. No amount of blowing will start the wheel, but it can instantly be set in motion by the vibrations caused by sound.

The Phonomotor (which is shown in the engraving Fig. 12) has a diaphragm and mouthpiece. A spring, which is secured to the bedpiece, rests on a piece of rubber tubing placed against the diaphragm. This spring carries a pawl that acts on a ratchet or roughened wheel on the fly-wheel shaft. A sound made in the mouthpiece creates vibrations in the diaphragm; the vibrations of the diaphragm move the spring and pawl with the same impulses, and as the pawl thus moves back and forth on the ratchet-wheel it is made to revolve.

The instrument, therefore, is of great value for measuring the mechanical force of sound waves, or vibrations, produced by the human voice.

THE TRANSMITTER

That part of the telephone into which we speak is called the transmitter. This is usually a piece of hard rubber having a round mouthpiece cut through it. At the other side of this mouthpiece is placed a diaphragm made of a thin piece of metal, which is held m place by a light spring. Behind this diaphragm, and very close to it, is placed a carbon button. Between this carbon button and the diaphragm is a small piece of platinum, which is placed so as to touch both the button and diaphragm very lightly. This platinum contact piece is connected with one of the wires running to the primary of the induction-coil, and the spring attached to the carbon button is connected with the battery to which the other wire of the primary is connected. This is all shown in the sketch of a transmitter. (Fig. 13.)