THE CARBON BUTTON
The little carbon button plays an important part in the telephone. You will see from the sketch of the transmitter that the current of electricity will flow through the carbon button to the contact point and through the wire to the primary of the induction-coil.
Now, carbon has a peculiarity, which is this, that if we press this carbon button, ever so slightly, against the platinum contact, there would be less resistance to the flow of the electricity through the wire to the primary, and the more we press it the less the resistance becomes. The consequence of this would be that more current would go to the primary, and the secondary would become correspondingly stronger. If the carbon button were left untouched, and nothing pressed against it, the flow of current through it would be perfectly even.
Having examined the inside of the transmitter and receiver, and understanding the effect of pressure on the carbon button, let us now see
HOW THE TELEPHONE WORKS
When we speak into the mouthpiece of the transmitter, the vibrations of the air cause the diaphragm to vibrate very rapidly, and, of course, every movement of the diaphragm presses more or less against the carbon button, in consequence of which the currents passing through the primary of the induction-coil are constantly increased or diminished and thus produce similar effects, but magnified, in the secondary.
The effect of this is that the magnet in the receiver of the other telephone is receiving a rapidly changing current, which, producing corresponding magnetic changes, makes the magnet alternately weaker or stronger. This influences, by magnetism, the iron diaphragm accordingly, and makes it reproduce the same vibrations that were caused by the speech at the transmitter of the sending telephone. Thus, the same vibrations being reproduced, the original sounds are given out, and we can hear what the person at the sending telephone is saying.
The action of the telephone illustrates well the wonderfully quick action of the electric current by the reproduction of these sound waves, or air vibrations, for they number many thousands in one minute's speech.