Fig. 17
It has been found that the influence of a magnet is very strong at its poles, and that this influence is always in the same lines. This influence has been described as "lines of force," which you will see represented in the sketch above by the dotted lines (Fig. 17). Of course, these lines of force are only imaginary and cannot be seen in any magnet, but they are always present. The meaning of this term "lines of force," then, is used to designate the strength of the magnet.
Many years ago the great scientist Faraday made the discovery that, by passing a closed loop of wire through the magnetic lines of force existing between the poles of a magnet, the magnetism produced the peculiar effect of creating a current of electricity in the wire. If the closed loop of wire were passed down, say from U to D, the current flowed in the wire in one direction, and if it were passed upward, from D to U, the current flowed in the other direction. Thus, you see, magnetism produces electricity in the closed loop of wire as it cuts through the magnetic lines of force. Just why or how, nobody knows; we only know that electricity is produced in that way, and to-day we make practical use of this method of producing it by embodying this principle in dynamo-machines, as we will shortly explain.
In carrying this discovery into practice in making dynamo-machines we use copper wire. If iron were used, there would be a current of electricity generated, but it would be much less in quantity, because iron wire has much greater resistance to the passage of electricity than the same size of copper wire.
Perhaps you can understand it more thoroughly if we state that when a closed loop of wire is passed up and down between the poles of a strong magnet there is a very perceptible opposition felt to the passage of the wire to and fro.
This is due to the influence of the magnetism upon the current produced in the wire as it cuts through the lines of force, and, inasmuch as these lines of force are always present at the poles of a magnet, you will see that, no matter how many times you pass the loop of wire up and down, there will be created in it a current of electricity by its passage through the lines of force.
Fig. 18
Suppose that, instead of using one single loop of copper wire, you wound upon a spool a long piece of wire like that in Fig. 18, and that you turned this spool around rapidly between the poles of the magnet, you would thus be cutting the lines of force by the same wire a great many times, and every time one length of the wire cut through the lines of force some electricity would be generated in it, and this would continue as long as the spool was revolved. But, as each length would only be a part of the one piece of wire, you will easily see that there would be a great deal of electricity generated in the whole piece of wire.