The brushes, resting upon the commutator, carry away the electricity from it into the wires with which they are connected.
Now we have our dynamo all put together and ready to start as soon as we properly connect these four loose ends of wire on the cores.
If you will turn back to Fig. 20 you will see that two of the wires are marked I, and the other two O. The letter I means the inside wire, or where the winding began, and the letter O means the outside wire, or where we left off winding.
Now, if we fasten together (or "connect") the two ends of wires, I and O, near the top of the magnet, we make the two wires round the cores into one wire, which starts, say, at I near the poles, goes all around one core, crosses over and around the other core down to the other end of the wire to O, near the poles.
So far we have called the iron a magnet, although it is not a magnet until electricity is put into it; so, when the dynamo is started for the first time, these two ends of wire, I and O, are connected to a battery or other source of current for the purpose of sending electricity through the wire on the cores. When the electricity goes into this wire the iron immediately becomes a magnet, and the lines of force are present at the poles.
Now, the armature is turned around rapidly by a steam-engine, and, as the wire on the armature cuts the lines of force with great rapidity and so frequently, there is quickly generated a large quantity of electricity, which passes out as fast as it is made through the commutator and the brushes to the lamp. And so long as the armature is revolved and the battery attached, the electricity will be made, or, as it is usually termed, "generated."
As we stated above, a battery is used the first time the dynamo is run, and now we will explain why it is not needed afterward.
Although iron will not become a permanent magnet, like steel, it does not lose all its magnetism after it has been once thoroughly charged. When the dynamo is stopped, after the first trial, and the battery is taken away, you will discover only traces of magnetism about the poles. They will not readily attract even a needle or iron filings; but there is, nevertheless, a very small amount of magnetism left in the iron. Small as this magnetism is, however, it is enough to make very faint and weak lines of force at the poles of the magnet.
After the battery is taken away, the ends of the wire on the cores, which were connected to the battery, are connected, instead, to the wires which carry away the electricity from the brushes to the lamps. Thus, you will see, if any electricity goes from the dynamo to the lamps, part of it must also find its way through the wires which are around the cores.