How Streams were Contaminated. For a time this seemed to end the danger, as the waste was soaked up by the soil, and eaten by its hungry bacteria and drunk up again by the roots of plants. But when ten or a dozen houses began to combine and run their drain-pipes together into a large drain called a sewer, then this could not open upon the surface of the ground, but had to be run into some stream, or brook, in order to be carried away. As cities and towns, which had been obliged to give up their wells, were beginning to collect the water from these same brooks and streams in reservoirs and deliver it in pipes to all their houses, it can be easily seen that we had simply exchanged one danger for another.

The Loss of Life from Typhoid Fever. For a time, indeed, it looked as if the new danger were the greater of the two, because, when the typhoid germs were washed into a well, they poisoned or infected only one, or at most two or three, families who used the water from that well. But when they were carried into a stream which was dammed to form a reservoir to supply a town with water, then the whole population of the town might become infected. A great many epidemics of typhoid fever occurred in just this way, before people realized how great this danger was. Simply from the pouring of the wastes from one or two typhoid fever cases into the streams leading into the water reservoir used by a town, five hundred, a thousand, or even three or four thousand cases of typhoid have developed within a few weeks, with from one hundred to five hundred deaths.

TYPHOID EPIDEMIC IN THE MOHAWK-HUDSON VALLEY, 1891-92

In 1891-92 typhoid fever broke out in Schenectady on the Mohawk River. Following this, Cohoes and West Troy, which drew their water supply from the Mohawk below Schenectady, and Albany, which drew its supply from the Hudson below the mouth of the Mohawk, suffered from typhoid epidemics; while Waterford and Troy, which drew their supplies from the Hudson above the mouth of the Mohawk, and the river towns that, like Lansingburgh, drew from other sources, entirely escaped the infection.

In fact, even to-day, when these dangers are better understood, and while most of our big cities are getting fairly clear of typhoid, so ignorant and careless are the smaller towns, villages, and private houses all over the United States, that over 35,000 deaths[14] from typhoid fever occur every year in a country which prides itself upon its cleanliness and its intelligence. This means, too, that there are at least half a million people sick of the disease, and in bed or utterly prevented from working, for from five to fifteen weeks each. All of which frightful loss of human life and human labor, to say nothing of the grief, bereavement, and anxiety of the two million or more families and relatives of these typhoid victims, is due to eating dirt and drinking filth. Dirt is surely the most expensive thing there is, instead of the cheapest.

METHODS OF OBTAINING PURE WATER

Wise Planning and Spending of Money is Necessary. If our city wells are defiled by manure heaps and vault-privies, and our streams by sewage, where are we to turn for pure water? All that is required is foresight and a little intelligent planning and wise spending of money. Of course the community must take hold of the problem, through a Board of Health, or Health Officer, appointed for the purpose; and this is why questions of health are coming to play such an important part in legislation, and even in politics. No matter how fast a city is growing or how much money its inhabitants are making, if it has an impure water supply or a bad sewage system, there will be disease and death, suffering and unhappiness among its people, which no amount of money can make up for. Cleanliness is not only next to godliness, but one of the most useful forms of it; and a city can afford to spend money liberally to secure it—in fact, it is the best investment a city can make.

Artesian and Deep Wells. The earliest, and still the most eagerly sought-for, source of pure water supply is springs or deep wells, such as we have referred to. Both of these are fed by rain water which has fallen somewhere upon the surface of the earth. As the layers of earth or rock, of which the crust of the earth is made up, do not run level, or horizontal, but are tilted and tipped in all directions, this rain water soaks down until it reaches one of these sloping layers that is so hard, or tough, as to be waterproof, and then runs along over its surface in a sort of underground stream. If anywhere in the course of this stream a very deep well shaft is driven right down through the soil until it strikes the surface of this sloping layer of rock, then the water will rise in this shaft to the level of the highest point from which it is running.