I say in the first place, that the parenchyma of nutrition is the same for all the organs, and that it is an assemblage of red vessels, of exhalants, of absorbents, of cellular texture, and of nerves; these are the proofs. 1st. These different organs are met with in all the others, as I have observed before, anatomy shows them every where, between each fibre, each layer, each point, if I may so say; they are truly the common organs. 2d. When we take away from the organs their different nutritive substances, for example, from the bones the phosphate of lime by acid, and the gelatine by boiling, there is a residue which is evidently cellular and vascular. 3d. There is no doubt but that the mechanism of the union of divided parts is the same as that of their natural nutrition. Now in the healing of wounds, the parenchyma of nutrition is first developed, and is every where the same; every where fleshy points appear, which are cellular and vascular, which have the same appearance and same character, whether they arise from a bone or a cartilage, a muscle, the skin, a ligament, &c. All wounds, in healing, like the organs, resemble each other in their parenchyma; they differ also like the organs, in the nutritive substance that is afterwards deposited in its texture, substances which vary according to the part where the wound happens to be; thus the deposit of the phosphate of lime gives to the callus a different character from that of muscular wounds, which are united by the exhalation of fibrin in the fleshy points that first arise upon the divided surfaces, &c. 4th. The mucous substance which forms the body of the embryo, appears to be nothing but cellular or mucous texture, as Bordeu calls it, which is abundantly supplied with vessels and nerves. In fact, when the organs are developed in this mucous substance, it may be seen in their interstices for a certain length of time, and exhibits there the same appearance as the body of the embryo in the first periods; gradually this substance becomes condensed, is filled with cells, and assumes the form of cellular texture; whence it may be presumed, that in this mucous state of the embryo, there is only the nutritive parenchyma of the organs; and as the parenchyma is the same in all, it is evident that the mass of the embryo must be homogeneous. Nutrition commences, and then each organ appropriates to itself the substance which is proper for it; after this it ceases to be homogeneous. From these considerations, it becomes easy to admit the uniformity of the parenchyma of nutrition, and its cellular, vascular and, in certain cases, nervous texture.
I am aware, that by admitting this common parenchyma of nutrition, it becomes necessary that it should be nourished itself, and consequently that we must go farther back; but in physiology, the art of finding the truth consists, in searching for it in secondary causes; here facts and experiments enlighten our way, beyond that, imagination only is our guide.
After having demonstrated that the organs resemble each other in a common parenchyma of nutrition, it is unnecessary to prove that they differ by the substances that are deposited there. Animal chemistry has within a few years past so much elucidated this point, that it is not worth while to waste time in refuting what has been written upon the identity of the nutritive juice.
In fine, it is easy to conceive, how each parenchyma of nutrition appropriates to itself according to the quantity of organic sensibility it enjoys, the nutritive substances that are proper for it, and which are brought to it by the circulation. It is not a phenomenon peculiar to nutrition; it is observable in all the acts of the organic economy. Thus the secretions take place only in consequence of the determined quantity of this sensibility, which, placing each gland in relation with the fluid that it should separate, makes it receive this fluid, and reject the others; thus the red part of the blood does not ordinarily pass into the exhalants, because the serous part is alone in relation with their organic sensibility; thus the substances that pass the intestines, do not stop in the biliary or pancreatic ducts, although their diameter is sufficient to admit them; thus cantharides are exclusively in relation with the sensibility of the kidneys, mercury with that of the salivary organs, &c. &c.
We see from this, that the mechanism by which the parenchymas of nutrition appropriate to themselves nutritive substances, is not an insulated phenomenon, but a consequence of a general law of organic sensibility. But why has this property as many degrees as there are organs in the economy? Why do these degrees establish relations so different between the organs and the substances that are foreign to them? Let us stop here; let us be contented with proving this fact by a great number of examples, without trying to discover the cause. We could offer nothing but conjectures upon this subject.
These few notions upon the nutritive phenomena, though indirectly connected with the subject of this volume, are not misplaced here; because in these phenomena, the generative systems upon which we are going to treat, perform the greatest part, and because we shall frequently have occasion to refer to them in the examination of the development of the organs, the development that authors have only vaguely examined, upon which the most exact and the most judicious of all physiologists, Haller, has only slightly glanced, but which however ought to receive the particular attention of physicians, of those especially who wish to consider diseases under the essential relation of the influence that age has upon them.
CELLULAR SYSTEM.
This system, which many know still, under the name of the cribriform body, the mucous texture, &c. is an assemblage of filaments, and of white soft layers, intermixed and interwoven in different ways, leaving between them spaces communicating together, more or less irregular, and which serve as a reservoir for the fat and serum. Placed around the organs, the different parts of this system act at the same time as a bond to connect, and as an intermediate body to separate them. Carried into the interior of these same organs, they essentially contribute to their structure.