1st. The adhesion is much stronger; the nerve breaks any where else rather than at its origin; the opposite of this takes place in the preceding system. 2d. It does not appear that the substance of the ganglion is continued in the nerve to form the medullary substance of it, since the organization of the one and the other is very different. Sometimes, however, the ganglion is continued for a short distance in the form of a cord. This happens especially in the superior cervical, in the lumbar, the semi-lunar, &c. Then the form only is different; but it is easy at the first view to distinguish where the ganglion ends and the nerve begins. 3d. This beginning is made in a sudden manner; it is like a muscle implanted in a tendon. The best manner of seeing this arrangement to advantage is to cut longitudinally the superior cervical ganglion and the cord it sends to the inferior; the change of nature of the one and the other is then very apparent; or, if we consider the ganglion as a division of the numerous filaments of the nervous cords, we distinguish very well the sudden change that these filaments experience in passing from the cord to the nerve. 4th. The dense cellular covering that surrounds the ganglion is continued upon the nervous origin, and gives it an increase of consistence at that place. This must be carefully raised before we come to the nerve. We see then each distinct filament arising from the ganglion. After it has gone from it, sometimes it remains separate; this takes place at the semi-lunar, the lumbar, the opthalmic, whose elongations are of great delicacy. Sometimes many of these filaments unite together and form a cord as between the two cervical, as at the great and small splanchnic nerves, &c.

I have not been able by maceration, ebullition, or the action of the acids to destroy the adhesion of the nerve with the ganglion, as we destroy that of the muscle with the tendon, of this with the bone, &c.

II. Course, Termination, Plexuses.

The nerves after going from the ganglions, are distributed in many different ways which we shall now examine.

1st. There are always some which go immediately to communicate with the system of animal life. The ophthalmic ganglion sends branches to the motores communes, and to the nasal nerve. The spheno-palatine communicates with the superior maxillary nerve; the superior cervical with all the nerves that surround it, viz. above with the motor externus, within with the great hypoglossal, the par vagum, the glosso-pharyngeal, the spinal, &c.; behind with the first cervical pairs. All the ganglions situated above each other along the vertebral column, send communications through each pair of foramina that correspond with them. The par vagum communicates with the semi-lunar, &c. It is not then any separate ganglion of the nerves of animal life; hence the common expression that designates each ganglion as arising from this or that pair, or being found in its course, is very inaccurate. Thus the opthalmic is by no means in the course of the common motor nerve. The one and the other send each a branch, which unites; or rather there is a branch of communication between the ganglion and the cerebral nerve. In general all these branches of communication with the system of animal life, are short, whitish, and of the same nature, or at least of the same appearance as the nerves of this last. They do not form any plexus in their course, rarely furnish branches, and appear to have no other use than that of establishing anastomoses between the two systems.

2d. Each ganglion sends above and below branches to the two ganglions that are contiguous to it. We have seen that the opthalmic and the spheno-palatine are exceptions to this rule. Sometimes also, as I have said, there are interruptions in other regions. Notwithstanding this, these general communications make us regard the ganglions as being connected every where, and able to receive from each other the different affections of which they can be primitively the separate seat. These branches of communication are straight as in the preceding, sometimes very fine, as between the lumbar and sacral ganglions, at other times larger, as that which is between the two cervical, superior and inferior, in some cases very large, as the great splanchnic, which is a real trunk of communication between the intercostals and the semi-lunar. The nerves that we are now considering, the last especially, have like the preceding, an arrangement exactly analogous to the cerebral nerves; they are formed of whitish cords, which are the result of filaments. The eye discovers no difference between them.

3d. Many filaments coming from ganglions, go to certain cerebral muscles, as to the diaphragm, some of those of the neck, &c.; others go to neighbouring organs only.

4th. The greatest number going from the ganglions in separate filaments, interlace in the form of a plexus with those of the contiguous ganglions, in the neighbourhood of, or upon the great vessels. The most remarkable plexus is the solar, composed by the innumerable branches that come from the semi-lunar; then we see the hypogastric, the cardiac, &c. The greater number of these plexuses are not exclusively formed by the nerves of organic life; those of the animal give some to them also, as the par vagum furnishes an example for the solar and the cardiac, as the sacral nerves afford another for the hypogastric, &c. However the nerves of organic life always predominate in these plexuses. There is only the pulmonary in which the par vagum particularly predominates, whilst the nerves coming from the inferior cervical ganglion are, if we may so say, but accessory.

The primitive plexuses resulting from the interlacing of the organic nerves at their exit from the ganglions, form a mass of irregular nerves, buried in the cellular texture, accommodated to the forms of the neighbouring organs, and wholly different from those of animal life, as of the brachial, the lumbar, &c.

In fact, the filaments at every instant, not only place themselves as in the preceding ones, at the side of each other, at every change of position; but their extremities continue; they interlace with each other, change at every point the direction, form networks, and mix so together, that it is not possible to distinguish any thing except a thousand nerves, that we might say grew up under the cloth with which we wiped the place where the plexus was found.