Most authors have described inaccurately the manner of the union of this great arterial trunk with the heart. This is the manner; the internal membrane of the heart with red blood, after having lined its ventricle, approaches the opening of the aorta, is attached there, forms by its folds the three semi-lunar valves, and stretching afterwards into the artery, covers it in its whole extent. It is this internal membrane that forms the union of the artery with the heart. The peculiar or fibrous membrane is not identified with the fibres of the heart. Its extremity is cut into three semi-circular festoons, which correspond with the semi-lunar valves that they support. These festoons do not extend to the fleshy fibres; there is between them and these fibres a space of two or three lines that the internal membrane alone covers. Between them and consequently between the valves, we perceive three little empty triangular spaces, covered by the membrane also. To distinguish this structure clearly, the origin of the aorta must be dissected well from without, and stripped entirely of the fatty texture that surrounds it. Then by cutting this artery and the ventricle, and by examining when held up to the light the union of one with the other, after having first removed the valves, we distinguish very well by the transparency of the internal membrane and the opacity of the three festoons that commence the aorta, the arrangement that I have just pointed out. It follows from this, that if the artery is accurately dissected on its exterior, and we detach from below upwards the internal membrane that forms the great canal of the circulation of the red blood, the artery is entirely separated from the heart. This entire separation of the fibres of the aorta from those of the heart, would alone be a strong presumption that their nature is not the same if many other considerations did not prove it in the most evident manner.

Origin of the trunks, branches, smaller branches, &c.

Arising thus from the left ventricle, the aorta divides almost immediately into two branches, one ascending goes to the neck, head and superior extremities; the other descending to the chest, abdomen and lower extremities. The first being very soon subdivided into four principal trunks, differs in this respect from the second, which forms for a long time one trunk only. The latter having to go over a much greater distance than the other, preserves with more certainty by this arrangement the whole of the motion that is given to the blood by the heart; this does not prevent, however, owing to the less distance, the impulse from being more sensibly felt by the superior than the inferior organs, as I have said above. At the superior part of the pelvis, the aorta divides into two secondary trunks. Soon after, subdivisions begin under the name of branches, which are afterwards multiplied under that of ramifications, &c.

Mathematical anatomists have exaggerated the number of the arterial sub-divisions. Many have thought there were a hundred to one artery; Haller reduced the number to twenty, and even less. To ascertain what is really the case, it is necessary to take the arteries at their origin, and follow their course under a serous membrane, the peritoneum for example, where they are every where very apparent; it will be seen in this way, that the sub-divisions are not more numerous than is stated by Haller; I have frequently satisfied myself of this. Besides, the inspection of a living animal whose abdomen is opened, is almost the only means that can be employed without danger of mistake. Injections when too coarse do not fill all the branches; when too fine, they pass into the exhalant vessels, and communicate to the whole serous surface a colour that is not natural to it. It is almost impossible to ascertain by injections, the precise point of the natural circulation. To be convinced of this, inject a dog and open the abdomen of another of the same size; you will see uniformly in one more or less vessels injected, than are seen in the other filled with blood. I frequently performed this experiment, at the time I was engaged in demonstrating the insufficiency of injections, either fine or coarse, to show the quantity of blood in any part.

When they divide, the arteries form among themselves very different angles. Sometimes right angles, as at the middle intercostals; sometimes obtuse, which is more rare, as at the superior intercostals; most commonly they are acute, particularly in the extremities. The origin of the spermatic artery is an instance of the extreme of this last kind of origin.

We observe in general, that wherever there are two divisions, one is larger than the other. The largest follows the original direction of the principal trunk, from which the other is more or less separated. In the interior of the artery, an eminence formed by the fold of the internal membrane, corresponds with the angle entering from without, and breaking the column of the blood, favours the change of its course. This eminence presents an arrangement, that is very variable, which is owing to the angle of origin. 1st. If the angle is a right one, the eminence has a circular arrangement and is equally evident in the whole circumference. 2d. If the angle is acute, as at the mesenteric, then this eminence is very evident between the branch that arises and the continuation of the trunk; it forms even a kind of semi-circular spur or projection, but between the trunk itself and the branch that arises from it, the union of which forms an obtuse angle, this eminence is less conspicuous. The more obtuse the angle is, and consequently the more opposed it is to acute, the less sensible is this second eminence; it has like the other a semi-circular form, and makes by its union with it a whole circle which is oblique; so that the portion of the circle formed by this second eminence is nearer the heart than that made by the other. 3d. If the angle of origin is obtuse, and consequently that formed by the branch with the continuation of the trunk is obtuse, things are then arranged in an inverse manner. There is at the mouth of the artery an oblique circle, the prominent half of which is nearest the heart.

The origin of the arterial trunks is generally pretty uniform; but that of the branches is so variable, that hardly any two subjects have the same arrangement, in this respect. Take for example the hypogastric; it would be impossible to form the least idea of its branches, if, neglecting the manner they separate from each other, you paid attention only to their course and distribution. These numberless varieties in the forms, are a remarkable character in organic life to which the arteries belong. This character must be placed at the side of the constant irregularity of the arteries. There is no symmetry in their general distribution, as in the distribution of the nerves of animal life. Those even of the extremities, that correspond, differ frequently in their mode of origin and the course of their branches.

The branches, smaller branches, &c. arise at distances very near each other. There is hardly any, except the carotid, internal iliac, &c. that runs a considerable course without furnishing some. Thus experiments in which it is necessary to introduce tubes into arteries, to open them, &c. can scarcely be made except upon the first of these, they are prevented in others by divisions that arise from them and hinder us from raising the artery to any considerable extent.

The origin of the arterial trunks, branches, smaller branches and ramifications, does not take place in a gradual and necessarily successive manner. Thus the smaller branches, and the ramifications even, arise equally from trunks and branches; for example, the bronchial, thymic arteries, &c. go from the aorta, and yet they are not so large as most of the divisions of the tibial, which is itself a third division of the aorta.

II. Course of the arteries.