Blood Vessels.
The parietes of the arteries contain secondary arteries destined to their nutrition. These arteries come usually from neighbouring branches, sometimes from the artery itself, whose capillary divisions terminate in the texture of its parietes. The heart exhibits this arrangement. At its exit, the aorta sends off the coronaries which are spread upon the texture of this organ and upon the origin of this artery itself. The bronchials furnish the parietes of the pulmonary veins. In the arterial texture, in which it is especially necessary to examine the little arteries, they wind at first in the cellular texture exterior to the artery, they ramify there in a thousand ways, send some divisions to the neighbouring organs, but furnish a great number that penetrate the peculiar membrane, are interposed between its layers, leave filaments there and terminate before they arrive at the internal membrane. I have never seen, either by injections, or by opening in a living animal an artery in which I had first stopt the course of the blood above and below, as for example, the carotid, I have never seen, I say, the little arteries penetrating even to this internal membrane. To distinguish well without injections, the vessels of the arteries, it is necessary to choose on one hand a great trunk like the aorta, and on the other to take this trunk in a young animal that has been killed for the purpose by asphyxia; all the little arteries then are perfectly injected with a very black blood. Examine the arteries of the fœtus, especially if it has died by asphyxia at birth, you will be struck with the great abundance of blood vessels that its great arteries contain and which are sometimes as livid as in asphyxia.
The veins accompany every where the little arteries in the parietes of the arterial trunks, they follow nearly the same distribution. I have not seen them become varicose in the parietes of aneurismatic arteries, in as evident a manner, as in the tumours of many other textures of the animal economy.
Cellular Texture.
The arteries have around them two kinds of cellular texture; one, which is very external, loose, fatty, full of serum, with distinct layers, unites them to the neighbouring parts, favours their motions, is in no way distinct from the rest of the cellular system; the other, firm, compact, not fatty, filamentous and not lamellated, forms the first of their coats. We have spoken in treating of the cellular system, of this particular layer that covers the arteries, which authors commonly call the cellular coat, which the ancients called nervous, on account of its whiteness, and which, analogous in every respect to the sub-mucous, sub-excretory cellular texture, &c. differs essentially from the preceding, as it differs from that which is in the interior, around or in the interstices of the organs.
These two kinds of cellular texture, the last especially, contribute to support the folds of the arteries; as when we have carefully dissected the peculiar coat, these folds entirely disappear. However when they are on one hand strongly marked, and on the other, are not subject frequently to disappear in yielding to the elongation of the parts, as in the internal carotid in its canal, I have observed that the arterial fibres are accommodated to these folds; that the fibres are more numerous on the convex side, than on the other, so that the thickness of the artery is exactly uniform, which it would not be without this inequality; for being more pressed on the concave side, these fibres would make the artery thicker at that place.
The cellular texture forms the first membrane of the arteries, and gives as we have seen insertions to the arterial fibres, but it does not extend into the interstices of these fibres; it is this that distinguishes essentially the layers of the arterial texture, from those of the muscular, venous textures, &c. I have never been able to discover the cellular texture there by any means that I could employ. Maceration, of which Haller has said so much, does not show any thing like it. When at the end of a very long time, the arteries finally yield to it, they exhibit only a kind of pulp, in which there is no cellular appearance.
In general, the resolution of the organs into cellular texture by maceration, exhibits a phenomenon much less extensive than is generally thought. It is the organic texture itself that forms the kind of pulp that is then obtained. As this texture varies in each system, the pulp of these systems, a long time macerated, varies equally; this undoubtedly would not happen, if, as Haller has advanced, the cellular texture was the only base, to which all the organs are brought by maceration. But let us return to the arteries.
Not only their fibres are not formed of cellular texture; but as I have said, they do not contain it in their interstices, a character in which it differs from all the other systems. The most careful dissection does not show it. When we separate the fibres from each other, we see, either that they are merely in apposition, or that they are held by little elongations of the same nature as themselves. I have said that this absence of the cellular texture is observable between the proper and common membranes of the arteries, though Haller has pretended the contrary.
I believe that this absence of cellular texture contributes much to the kind of brittleness that particularly distinguishes the arterial texture, and which, as I have observed, renders it the least fit of all the animal textures, to support ligatures without breaking. It is to this circumstance also that must be referred the difficulty, the impossibility even of arterial dilatations, of the formation of cysts by the parieties of arteries. There are never, we know, true aneurisms; when these tumours increase at all, the two membranes of the artery break and the cellular coat alone is dilated. Hence the necessity of the peculiar structure which distinguishes the cellular texture placed around the arteries, and gives it a resistance that it has not in most other parts. Authors are astonished at these ruptures which distinguish the dilatations of the arteries from those of all the other systems. If they had compared the texture of the arteries with that of the other systems they would have seen the reason of this difference.