What we have to say of these properties, will refer particularly to the arteries, as well as what we have said of the organization. In fact the fleshy parietes of the heart and the membranous ones of the pulmonary veins, possess properties that will be examined hereafter, and which differ from those of the arteries, on account of the difference of texture. As to those of the common membrane they are nearly the same in the whole course of the red blood, the organization differing but very little.
I shall consider the properties of the arteries only in the arterial texture and in the common membrane; for the cellular coat belonging to the system of that name, partakes of all its properties.
I. Physical Properties.
Elasticity, which is obscure in most of the other animal textures that are characterized by a great degree of softness is very remarkable in the arteries; it is this that particularly distinguishes them from the veins. This elasticity keeps their parietes apart, though they may be empty. These tubes, with the cartilaginous, as the trachea, the meatus auditorius of the fœtus, &c. which are equally endowed with elasticity, are the only ones that keep thus open of themselves. All the others have their parietes applied to each other, when the fluid that runs through them does not distend these parietes.
It is to the elasticity of the arterial parietes that must be referred their recovering themselves when they have been flattened so as to obliterate their cavity, the sudden straightening of an arterial tube that has been bent, &c.
This property takes also an evident part in that kind of locomotion the arteries have upon the entrance of the blood. In fact, lay bare a tortuous arterial trunk in a living animal, you see the whole of it rise at each pulsation, leave the place it occupied, and straighten itself, particularly at its curves. At the moment the injection penetrates a very thin small subject, we perceive also through the integuments, a locomotion of all the tortuous branches of the face. Now it is evident that if the arteries were not of a firm and elastic texture, they would not thus obey the motion that is impressed upon them; besides, observe what takes place in the injection of the abdominal branches of the vena porta, which having no valves can be injected like arteries. Nothing similar to the locomotion of which I spoke is observed in driving the fluid into them. I have often made arterial blood circulate in the veins by the means of curved tubes, fitted to the vessels of a living animal, for example, by making the carotid and external jugular communicate; now, we observe clearly in the veins carrying the red blood, a kind of pulsation synchronous with the beating of the heart, and a distinct rustling noise, but not a real locomotion.
The locomotion of the arteries supposes three things, 1st, an agent of impulse, that communicates a motion more or less strong, to the blood contained in their interior; 2d, a tortuous arrangement which allows the blood in striking their parietes to straighten them; 3d, the firmness and elasticity of these parietes which facilitate this straightening. On the other hand, the parietes must not be too firm; thus the cartilaginous texture would be improper for this locomotion.
The elasticity of the arteries is as striking after death as during life; it is essential to distinguish it from contractility of texture. There are many distinctive characters, the following are the most striking; 1st. The contractility of texture takes place only when there is a want of extension of the arterial parietes, that is to say, when these vessels cease to contain the blood which resists their contraction, or when they are cut and afterwards left to themselves. On the contrary, elasticity requires for its exercise, a previous compression and is manifested by the sudden return of the parts to their natural state. 2d. Contractility of texture has a permanent tendency to contraction; we may say that all the parts that possess it are in a forced state; so that as soon as this state ceases, contraction takes place. On the contrary, elasticity has not this constant tendency to exercise. 3d. Every elastic motion is brisk, sudden, as quick to stop as to begin. On the contrary, every motion of contractility of texture is insensible, slow, continues often many hours and even days, as we see it in the retraction of amputated muscles, &c. 4th. Every organ in which there is contractility of texture, enjoys necessarily extensibility. On the contrary, this last property is not necessarily connected with elasticity, as we observe it in the cartilages of animals, &c. 5th. Elasticity is purely a physical property. Contractility of texture, without being vital, is only inherent in the organs of animals.
II. Properties of texture. Extensibility.
The extensibility of the arteries may be considered, 1st, transversely; 2d, longitudinally.