Preternatural Development.
I have already observed in the article on the fibrous capsules, that when the head of a bone remains displaced in a luxation, it is not a membrane analogous to these capsules that is developed around it; it is a real cyst, smooth on its internal surface, moistened with serum, formed at the expense of the cellular texture, and presenting, with a little more thickness, the true appearance of the synovial membranes; it is a preternatural synovial membrane. The motions imparted to the displaced limb appear to increase the serous exhalation in this new membrane; hence no doubt the great advantage of these motions, in order to re-establish in part the mobility of the bones which remain out of their sockets. I have seen a dancer, the head of whose humerus was lodged in the hollow of the axilla, after a luxation that was not reduced, perform very varied motions with it.
ARTICLE SECOND.
SYNOVIAL SYSTEM OF THE TENDONS.
This system noticed by many authors and described by Fourcroy, Soemmering, &c. is precisely of the same nature as the preceding, from which it differs only by its situation; it is often even confounded with it. Thus the synovial membrane of the tendon of the biceps is continuous with that of the scapulo-humeral articulation; thus those of the gemelli are so with the synovial membrane of the femoro-tibial articulation; it is the same membrane which belongs at the same time to the tendon and to the articulation. A remarkable example of it is seen in the extensors of the leg and the ham, to the tendons of which the same articular synovial membrane of the knee serves for a capsule.
But very few tendinous synovial membranes are found in the trunk; almost all are on the extremities where they serve to assist the slipping of the tendons. They are met with, 1st, where a tendon is reflected at an angle upon a bone, as around those of the great lateral peroneus, the peroneus medius, the obturator internus, the great oblique of the eye, &c.; 2d, where a tendon slips upon an osseous surface without being reflected, as at the extremity of the tendo Achillis, as under that of the great glutæus, and those of the psoas and iliacus united; 3d, where a tendon slips in a fibrous capsule, as in those of all the flexors, &c. Their extent is uniformly in proportion to that of the tendons upon which they are spread.
Forms; Relations; Synovial Fluid.
The tendinous synovial membranes, are, like the articular ones, sacs without an opening, spread on the one hand on the tendon and on the other upon the neighbouring organs. These sacs are differently shaped according to the arrangement of the tendon, but their general conformation is uniform. We see from this that every tendinous synovial membrane has two faces, one which forms the interior of the sac, which is everywhere free and contiguous to itself, the other which lines the adjacent organs.
The free surface is constantly moistened by a fluid precisely similar to that of the articulations, furnished like it by exhalation, and not as authors have said by red bodies situated in the neighbourhood, bodies of which oftentimes there is no trace visible, and which, when they exist, have nothing glandular in them. This fluid is in general much less abundant than in the articulations, at least in the dead body. But there are varieties in the different synovial bags; those of the tendo Achillis, of the tendons of the psoas and iliacus united, of that of the obturator internus, &c. are always more moist than those of the flexor tendons, &c.
Is it to the absence of synovia that must be attributed the species of crepitation which the tendons sometimes make in their motions? I know not. I would only observe that this crepitation has some analogy with the crackling noise of the joints of the fingers when they are bent quickly, a noise, which does not depend, as might be supposed, on the friction of the osseous surfaces; in fact, when it has been once produced, it cannot be again, though there may be friction again. Besides it is known that this crackling noise arises from the forced elongation of the phalanges, and consequently from the separation of their articular surfaces, as well as from the flexion.