[31] The contractility in the different organs in which we can observe it does not exhibit characters so striking as those which Bichat here assigns to it, and the motions which he ranks in the same class have the greatest differences among them. To be convinced how little justice there is in this division, it will be sufficient to trace the progress of the food, along its whole course, to the interior of the digestive canal. The first act which is presented to our observation is entirely voluntary; this is mastication; the act which follows it is not so completely so. Deglutition in fact can sometimes take place against the will, if a body of a proper consistence is at the entrance of the pharynx. We have but an imperfect control over the muscles of the uvula and the velum palati, if we wish to move these parts separately; we have perhaps less power still over the contraction of the muscles of the pharynx, though they do not appear to differ from the locomotive muscles, either in their symmetry, or in the arrangement and colour of their fibres, or in the nerves which they receive; nor finally do they differ in the sudden, instantaneous contraction, wholly different from the slow contraction, the vermicular motion of the stomach and intestines.
After having passed the pharynx, the alimentary mass enters the œsophagus. The motions are there still under the influence of the nerves; but they are not at all under the influence of the will. The muscular layer which produces them has not the appearance, the red colour of the voluntary muscles; but it still preserves something of the sudden motion of their contraction. Hence we see, that the motions of the œsophagus cannot be ranked either among the motions of organic life, since they cease by the division of the nerves, or among those of animal life, as they are not under the influence of the will. It is remarkable also that Bichat, who, in this and the following paragraph, announces the characters of the different kinds of contractility, does not speak of the œsophagus, whilst he offers as an example the motions of the bladder, the heart, the stomach and the intestines.
When Bichat wrote this work, hardly any thing of the motions of the œsophagus was known, except from the writings of Haller, who made but four experiments on the subject. I wished to observe them myself, and I have discovered many facts which I think interesting; I shall relate them here as I described them in a memoir read to the Institute in 1813. Before attempting to ascertain what part the œsophagus took in the passage of the food, it was proper to ascertain its state when it was supposed to be at rest. In the first experiments, I noticed an important phenomenon, and which hitherto had escaped the observation of physiologists, viz., that the lower third of the œsophagus has constantly an alternate motion of contraction and relaxation, which appears to be independent of all foreign irritation. This motion appears to be confined to the portion of the tube which is surrounded by the plexus of nerves of the eighth pair, that is to say, to about its lower third; there is no trace of it in the neck nor in the superior part of the thorax. The contraction appears like a peristaltic motion, it begins at the junction of the superior two thirds with the inferior third, and is continued to the insertion of this tube in the stomach. When the contraction is once produced, it continues for an uncertain time; usually it is less than half an hour. The œsophagus contracted in this way in its lower third is hard like a cord powerfully stretched. Some persons whom I have made feel of it in this state have compared it to a rod. When the contraction has lasted the time I have just mentioned, the relaxation takes place suddenly and simultaneously in each of the contracted fibres; in some cases, however, the relaxation seems to take place from the superior fibres towards the inferior ones. The œsophagus examined during the state of relaxation exhibits a remarkable flaccidity, which contrasts wonderfully with the state of contraction.
This alternate motion is dependent on the nerves of the eighth pair. When these nerves are cut in an animal, this motion entirely ceases; the œsophagus contracts no more, but it is not in a state of relaxation; its fibres without the control of nervous influence shorten; it is this which produces, so far as the touch is concerned, an intermediate state between contraction and relaxation.
When the stomach is empty or half full of food, the contraction of the œsophagus recurs at much longer intervals; but if the stomach be powerfully distended by any cause, the contraction of the œsophagus is usually very powerful, and continues for a much longer time. I have seen it, in cases of this kind, continue more than ten minutes; under the same circumstances, that is to say, when the stomach is excessively full, the relaxation is always much shorter.
If during the time of contraction, we wished, by mechanical pressure made on the stomach, to make a part of the aliments which it contained pass into the œsophagus, it would be necessary, in order to accomplish it, to employ a very considerable force; and often even we should not succeed. It seems that pressure increases the intensity of the contraction, and prolongs its duration. If, on the contrary, the stomach is pressed during relaxation, it is very easy to make the substances it contains pass into the cavity of the œsophagus. If it be a liquid, the slightest pressure, sometimes even its own weight, or the tendency which the stomach itself has to contract, will bring about this result. When the stomach is laid bare and distended above measure, fluid does not usually enter into the œsophagus, because, as we have said, the distension of the stomach is a cause which prolongs the contraction of the œsophagus.
The passage of a fluid in the œsophagus is usually followed by its entrance into the stomach. Sometimes however the fluid is thrown out. When it goes into the stomach, the œsophagus contracts nearly the same as in deglutition, sometimes almost immediately after it has entered it; at other times the œsophagus allows itself to be considerably distended before it pushes it into the stomach.
It was at the moment of deglutition that Haller observed the motions of the œsophagus, and the description which he has given of them is very accurate for the two superior thirds of the canal; but the action of the inferior third is essentially different; and this distinction seems to have escaped him. Haller says that the relaxation of each circular fibre immediately follows the contraction; and this is true of the portion of the canal situated in the neck and in the superior part of the thorax; but it is not accurate for the inferior portion, in which we see that the contraction of all the circular fibres is continued long after the entrance of solids or fluids into the stomach. At this moment the mucous membrane of the cardiac extremity of the œsophagus, pushed by the contraction of the circular fibres, forms a very considerable projection into the cavity of the stomach. The contraction usually coincides with the period of inspiration, when the stomach is more strongly compressed; the relaxation takes place most often at the time of expiration. When the aliments have once entered the stomach, it is this contraction of the inferior part of the œsophagus which opposes their return. The resistance that is offered at the other orifice is not of the same species. In living animals, whether the stomach be empty or full, the pylorus is uniformly shut by the contraction of its fibrous ring and the contraction of its circular fibres. There is frequently seen in the stomach another contraction, at one or two inches distance, which appears to be designed to prevent the aliments from arriving at the pylorus. We perceive also irregular contractions, beginning at the duodenum, and extending to the pyloric portion of the stomach, the effect of which is to push back the aliments towards the splenic part.
The aliments remain in the stomach long enough to undergo no other modifications than those which result from their mixture with the perspiratory and mucous fluids, which are constantly found in it and renewed there. During this time the stomach remains uniformly distended; but afterwards the pyloric portion contracts in its whole extent, especially in the part nearest the splenic portion, towards which the aliments are carried. Then there is found, in the pyloric portion, only the chyle mixed with some unchanged aliments. When there is accumulated in this part a quantity of it, which is never very considerable, there is seen, after a moment of rest, a contraction at the extremity of the duodenum; the pylorus and the pyloric portion soon take part in this motion, and the chyle is forced towards the splenic portion; but afterwards the motion is in an inverse direction. The pyloric portion, which allowed itself to be distended, contracts from left to right, and directs the chyle towards the duodenum, which soon passes the pylorus and enters the intestine. The same phenomenon is repeated a certain number of times, then it ceases, and commences again after some time. This motion, when the stomach contains much food, is limited to that part of the organ nearest the pylorus; but as it becomes empty, the motion extends, and appears even in the splenic portion when the stomach is almost entirely evacuated. In general, it becomes more evident at the end of chylification.
The motion which produces the progression of the chyle in the small intestines is very analogous to that of the pylorus; it is irregular, made at variable intervals, it is sometimes in one direction and sometimes in another, and sometimes appears in many parts at once; it is always more or less slow, it produces changes of relations in the intestinal circumvolutions, and it is entirely beyond the influence of the will.