The red-blooded ventricle and auricle, exert their influence upon the brain by means of the fluid which they send thither through the carotid and vertebral arteries. This fluid may excite the cerebral organ in two ways. 1st. By the movement, with which it is directed. 2nd. By the nature of its colouring principle.
It is easy to prove that the movement of the blood is necessary to the life of the brain. Expose the brain of an animal in part, and tie the carotids. In such case the cerebral movement will be sometimes weakened, and then the animal will be stupified, at other times the vertebral arteries will exactly supply the place of the carotids, and then there will be nothing deranged in the principal functions of the brain; for there is always a relation existing between the alternate rise and fall of the cerebral mass, and the energy of life which it displays.[58]
In general, the obliteration of the carotids is never suddenly mortal. Animals will live without them, at least for a certain time. I have kept dogs in this state for several days and have afterwards made use of them for other experiments: two however died in the course of six hours, after the application of the ligatures.
After having made the above experiments which go very far to the establishment of the principle which I am labouring to prove, let a piece of the cranium be taken from another animal and tie the vertebral and carotid arteries. The movement of the brain will then be entirely interrupted and the animal immediately die.
The impulse, which proceeds then from the influx of the blood into the brain, is a condition essential to the functions of this organ, but other proofs may be adduced, for the establishment of the truth of this assertion.
1st. There are a number of compressions, which can only act by preventing the brain from being duly affected by such impulse. A collection of pus, or blood, will often put a stop to all the functions, which relate to the perception, memory, and voluntary motions of the individual. Let such compression be removed and his sensibility will immediately re-appear. In such case, it is manifest that the brain was not disorganized, but only compressed, and in a state incapable of being excited by the heart.[59]
I do not think it necessary on this subject to cite cases. All authors, who have treated of wounds of the head, are full of them. I shall content myself with remarking, that the same effect may be artificially produced in our experiments upon animals, and that accordingly as the brain is compressed or free, the creature will be insensible, or the contrary. According to the degree of the compression, will be the degree of the stupor.
2dly. There are reptiles, in the brain of which no motion whatever is occasioned by the heart. The frog is of this species. On raising the upper portion of the cranium, and exposing the brain, there cannot be perceived the slightest motion. Now in this species, and that of the salamander, the influx of blood may be cut off from the cerebral organ without occasioning the immediate death of the animal. The voluntary muscles for instance continue to act; the eyes to exhibit a lively appearance, the tact also of the creature is manifest for some time after the heart has been taken away, or the double branch which proceeds from the single ventricle of these animals has been tied.[60] I have frequently repeated these experiments, and have constantly found the effect the same.
3rd. It is a general observation, that those animals which have a long neck, and in which the heart for that very reason is not so capable of exerting a lively influence over the brain, have a more limited intellect, and the cerebral functions less marked. On the contrary a very short neck, and the approximation of the heart to the brain very generally are found to coincide with the latter. Similar phenomena are sometimes observed in men. They who have the neck particularly long are dull, they who have it short, for the most part intelligent and lively.