276. Constitution volcanique de la lune. Les montagnes très-nombreuses de la lune présentent un caractère particulier extrêmement remarquable. Elles offrent en général l'aspect d'un bourrelet circulaire entourant une cavité dont le fond est quelquefois au-dessous du niveau des parties environnantes de la surface de la lune. Souvent il existe au milieu de cette cavité centrale une montagne isolée en forme de pic (fig. 106). Ces montagnes circulaires ressemblent assez aux cratères des volcans éteints qui existent à la surface de la terre; mais les diamètres des montagnes lunaires sont incomparablement plus grands que les diamètres de ces volcans. Le diamètre de l'Etna, dans son maximum, a atteint 1500 mètres; et celui du Vésuve, environ 700 mètres. Or, parmi les plus grandes montagnes circulaires de la lune on en cite deux qui ont 91200 et 87500 mètres de diamètre. A partir de là on en trouve de toutes les dimensions, jusqu'aux plus petites que nous puissions apprécier à la distance de la lune. Eu égard à leurs dimensions, les grandes montagnes lunaires sont plutôt comparables à certains cirques montagneux que l'on rencontre sur la terre, et que l'on désigne sous le nom de cratères de soulèvement. Tels sont, par exemple, le cirque de l'île de Ceylan, qui a 70000 mètres de diamètre; celui de l'Oisans, dans le Dauphiné, qui en a 20000, et le cirque du Cantal (Auvergne), qui en a 10000. En somme la surface de la lune nous offre l'aspect général des contrées volcaniques; on y voit presque partout des accidents de terrain considérables; le sol paraît avoir été tourmenté par des actions volcaniques intérieures; il n'offre pas les traces d'un nivellement pareil à celui que les eaux et les agents atmosphériques ont produit avec le temps sur la surface de la terre.

277. Absence d'atmosphère à la surface de lune. Il résulte de divers indices que la lune n'est pas entourée d'une atmosphère gazeuse analogue à celle dans laquelle nous vivons; voici l'observation qui démontre de la manière la plus précise cette absence d'atmosphère autour de la lune. (V. aussi la note ci-après.)

Quand cet astre, en vertu de son mouvement propre, vient à passer devant une étoile, on peut observer avec une grande exactitude l'instant précis de la disparition de l'étoile, puis l'instant de sa réapparition; de là on déduit la durée de l'occultation. D'un autre côté, les lois connues du mouvement de la lune nous apprennent quelle est la position de cet astre par rapport à la terre et à l'étoile, au moment de l'observation, et par suite quelle est la corde du disque qui passe précisément entre l'observateur et l'étoile. Connaissant la vitesse du mouvement propre de la lune au même moment, on peut calculer le temps qu'il faut au dernier point de cette corde (considérée dans le sens du mouvement), pour venir remplacer le premier sur la direction du rayon visuel qui va de l'observateur à l'étoile; car ce temps est précisément celui qu'il faut à cette deuxième extrémité comme à tout autre point de la lune pour parcourir dans le sens de l'orbite un chemin ayant la longueur connue de la corde en question. Or on trouve toujours que ce temps est égal à la durée de l'occultation; ou du moins la différence qui existe entre ces deux temps est assez faible pour qu'on puisse la regarder comme résultant des erreurs d'observation.

Il n'en peut être ainsi évidemment que si la lune n'a pas d'atmosphère gazeuse analogue à la nôtre; en effet, le temps calculé est précisément celui pendant lequel le rayon lumineux qui va en droite ligne de l'étoile à l'observateur est successivement intercepté par les divers points de la corde que nous avons considérés; c'est donc précisément le temps que doit durer l'occultation, si ce rayon direct est le seul qui puisse nous montrer l'étoile. Cela posé, admettons que la lune soit entourée d'une atmosphère gazeuse plus ou moins étendue, et considérons l'étoile e un peu après le moment où le disque lunaire a commencé à s'interposer entre elle et l'observateur placé en O (fig.107, nº 1).

Le rayon direct eO est intercepté et ne nous montre plus l'étoile; mais le rayon lumineux ec qui traverse l'atmosphère tout près de ce disque se réfracte et nous apporte indirectement la vue de l'astre; celui-ci ne cesse d'être vu que lorsqu'il est déjà assez avancé derrière la lune pour que la réfraction ne puisse plus dévier jusqu'à nous aucun des rayons qui vont de l'étoile à l'atmosphère: l'occultation commencerait donc en réalité un certain temps après le passage entre la terre et l'étoile de la première extrémité de la corde que nous considérons. Elle cesserait aussi un certain temps avant le passage de la seconde extrémité; car un peu avant ce dernier passage, la vue de l'étoile nous serait apportée par un des rayons lumineux réfractés allant de l'étoile à la partie de l'atmosphère qui avoisine cette seconde extrémité (fig. 107, nº 2). La durée de l'occultation, ainsi diminuée au commencement et à la fin, différerait donc du temps qui a été calculé d'après la longueur de la corde, d'une quantité d'autant plus grande que l'atmosphère lunaire serait plus étendue et plus dense. Comme il n'existe pas de différence appréciable entre ces deux durées, il en résulte que la lune n'a pas d'atmosphère d'une densité appréciable.

On a pu reconnaître ainsi que l'atmosphère de la lune, s'il y en a une, est nécessairement moins dense à la surface même de l'astre que l'air qui reste dans nos meilleures machines pneumatiques lorsqu'on y a fait le vide autant que possible. Cela revient à dire que la lune n'a pas d'atmosphère [101].

Note 101:[ (retour) ] On arrive à la même conséquence de la manière suivante: Si la lune a une atmosphère, il n'y a pas de nuages flottants dans cette atmosphère comme dans la nôtre; car des nuages cacheraient nécessairement certaines portions de la surface de la lune, et l'aspect général du globe lunaire varierait d'un instant à l'autre d'une manière irrégulière; or nous savons qu'il ne se passe rien de pareil.

S'il n'y a pas de nuages dans l'atmosphère de la lune, cette atmosphère est tout à fait transparente; mais une pareille atmosphère doit, en réfléchissant les rayons lumineux qui la traversent en dépassant la lune, produire sur cet astre quelque chose d'analogue à notre crépuscule: une moitié de la lune étant éclairée comme la moitié de la terre, des rayons solaires seraient réfléchis par l'atmosphère de cette première moitié de la lune sur une partie de la seconde moitié en quantité décroissante, à mesure qu'on s'éloignerait des bords de l'hémisphère éclairé. À l'époque où la lune n'est pas pleine, la surface de la lune qui est vis-à-vis de nous se composerait toujours d'une partie éclairée et d'une partie obscure, mais sans transition brusque de l'une a l'autre; il devrait y avoir une dégradation insensible de lumière du côté de la partie de cette surface qui ne reçoit pas directement les rayons du soleil; il n'y aurait pas une séparation nette des deux parties. Or, comme cette dégradation de lumière n'existe pas, que les deux parties de l'hémisphère lunaire qui fait face à la terre sont séparées par une ligne elliptique très-tranchée, on conclut de là que la lune n'a pas d'atmosphère.

278. Absence d'eau sur la lune. De ce que la lune n'a pas d'atmosphère, on conclut immédiatement qu'il n'existe pas d'eau à la surface de cet astre; car s'il y en avait, cette eau, dont la surface serait libre de toute pression, produirait des vapeurs qui constitueraient immédiatement une atmosphère. C'est donc à tort qu'on a donné le nom de mers aux taches grisâtres qu'on aperçoit à la surface de la lune (nº 286).

279. Une conséquence immédiate de l'absence d'atmosphère et d'eau sur la lune, c'est que cet astre ne peut être habité par des êtres animés, au moins par des êtres analogues à ceux qui habitent la terre.